BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ibrahimi, Muhamet"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemRestricted
    Islamic army of caucasus : the truth behind triumph against Dunsterforce
    (Bilkent University, 2015) Piriyev, Huseyn; Mammadli, Mammad; Ibrahimi, Muhamet; Garaejev, Teimur; Tashbolotov, Temirlan
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Logistic cellular automata
    (2019-09) Ibrahimi, Muhamet
    Cellular Automata (CA), initially formalized to investigate self-reproducing constructions, are among the most frequently used tools to model and understand complex systems. These computational frameworks are de ned in discrete spacetime- state domains, where time evolution occurs through local interactions. Despite the simple properties and the succinct absence of long range connections, these implementations have been proven proper for studying large scale collective behavior and self-organizing mechanisms which often emerge in dynamical systems. Following the spirit of the well-known Logistic Map, we introduce a single parameter that tunes the dynamics of totalistic CA by mapping their discrete state space into a Cantor set. By introducing this simple approach on two archetypal models, this study addresses further investigation of several complex phenomena: critical deterministic phase transitions, pattern formation and tunable emanation of self-organized morphologies in these discrete domains. We rst apply this approach to Conway's Game of Life and observe sudden changes in asymptotic dynamics of the system accompanied by emergence of complex propagators. Incorporation of the new state space with system features is used to explain the critical points and formulate the tuning parameter range where the propagators adaptively survive, by investigating their autocatalytic local interactions. Similar behavior is present when the same recipe is applied to Rule 90, a totalistic elementary one-dimensional CA. In addition, the latter case shows that transitions between Wolfram's universality classes of CA can be achieved by tuning a single parameter continuously. Finally, we implement the same idea in other models and qualitatively report the expanding complexity that these frameworks support.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback