Browsing by Author "Hubaux, Jean-Pierre"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Privacy and security in the genomic era(ACM, 2016-10) Ayday, Erman; Hubaux, Jean-PierreWith the help of rapidly developing technology, DNA sequencing is becoming less expensive. As a consequence, the research in genomics has gained speed in paving the way to personalized (genomic) medicine, and geneticists need large collections of human genomes to further increase this speed. Furthermore, individuals are using their genomes to learn about their (genetic) predispositions to diseases, their ancestries, and even their (genetic) compatibilities with potential partners. This trend has also caused the launch of health-related websites and online social networks (OSNs), in which individuals share their genomic data (e.g., Open-SNP or 23 and Me). On the other hand, genomic data carries much sensitive information about its owner. By analyzing the DNA of an individual, it is now possible to learn about his disease predispositions (e.g., for Alzheimer's or Parkinson's), ancestries, and physical attributes. The threat to genomic privacy is magnified by the fact that a person's genome is correlated to his family members' genomes, thus leading to interdependent privacy risks. This short tutorial will help computer scientists better understand the privacy and security challenges in today's genomic era. We will first highlight the significance of genomic data and the threats for genomic privacy. Then, we will present the high level descriptions of the proposed solutions to protect the privacy of genomic data and we will discuss future research directions. No prerequisite knowledge on biology or genomics is required for the attendees of this proposal. We only require the attendees to have a slight background on cryptography and statistics.Item Open Access Privacy-preserving genomic testing in the clinic: a model using HIV treatment(Nature Publishing Group, 2016) Mclaren, P. J.; Raisaro, J. L.; Aouri, M.; Rotger, M.; Ayday, E.; Bartha, I.; Delgado, M. B.; Vallet, Y.; Günthard, H. F.; Cavassini, M.; Furrer, H.; Doco-Lecompte, T.; Marzolini, C.; Schmid, P.; Di Benedetto, C.; Decosterd, L. A.; Fellay, J.; Hubaux, Jean-Pierre; Telenti A.Purpose:The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics.Methods:We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers.Results:A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%.Conclusions:The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Item Open Access A privacy-preserving solution for compressed storage and selective retrieval of genomic data(Cold Spring Harbor Laboratory Press, 2016) Huang Z.; Ayday, E.; Lin, H.; Aiyar, R. S.; Molyneaux, A.; Xu, Z.; Fellay, J.; Steinmetz, L. M.; Hubaux, Jean-PierreIn clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared withBAM, thede factostandard for storing aligned genomic data, SECRAM uses 18%less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based insteadofread-based,and(2)itallowsrandomqueryingofasubregionfromaBAM-likefileinanencryptedform.Ourmethod thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data.Item Open Access Quantifying interdependent risks in genomic privacy(Association for Computing Machinery, 2017-02) Humbert M.; Ayday, E.; Hubaux, Jean-Pierre; Telenti A.The rapid progress in human-genome sequencing is leading to a high availability of genomic data. These data is notoriously very sensitive and stable in time, and highly correlated among relatives. In this article, we study the implications of these familial correlations on kin genomic privacy. We formalize the problem and detail efficient reconstruction attacks based on graphical models and belief propagation. With our approach, an attacker can infer the genomes of the relatives of an individual whose genome or phenotype are observed by notably relying on Mendel’s Laws, statistical relationships between the genomic variants, and between the genome and the phenotype. We evaluate the effect of these dependencies on privacy with respect to the amount of observed variants and the relatives sharing them. We also study how the algorithmic performance evolves when we take these various relationships into account. Furthermore, to quantify the level of genomic privacy as a result of the proposed inference attack, we discuss possible definitions of genomic privacy metrics, and compare their values and evolution. Genomic data reveals Mendelian disorders and the likelihood of developing severe diseases, such as Alzheimer’s. We also introduce the quantification of health privacy, specifically, the measure of how well the predisposition to a disease is concealed from an attacker. We evaluate our approach on actual genomic data from a pedigree and show the threat extent by combining data gathered from a genome-sharing website as well as an online social network.Item Open Access Whole genome sequencing: revolutionary medicine or privacy nightmare?(Institute of Electrical and Electronics Engineers, 2015) Ayday, E.; Cristofaro, Emiliano De; Hubaux, Jean-Pierre; Tsudik, G.Whole genome sequencing will soon become affordable for many individuals, but thorny privacy and ethical issues could jeopardize its popularity and thwart the large-scale adoption of genomics in healthcare and slow potential medical advances. The Web extra at http://youtu.be/As3J9NYsbbY is an audio recording of Alf Weaver interviewing Bradley Malin and Jacques Fellay about the possibilities and challenges of whole genome sequencing. © 1970-2012 IEEE.