BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hizalan Ozsoy, G."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thiol functionalized conjugated polymer
    (Elsevier, 2022-11) Karakurt, O.; Alemdar, E.; Cevher, D.; Gulmez, S.; Taylan, Umut; Cevher, S. C.; Hizalan Ozsoy, G.; Ortac, Bulend; Cirpan, A.
    Conjugated polymers are promising low-cost, lightweight, and flexible candidates for scalable photovoltaic applications to establish decarbonized energy technologies. However, they possess deficiencies in terms of their lower charge mobility and exciton diffusion length compared to their inorganic counterparts, impeding the efficient charge extraction at high active layer thickness values. In this manner, active layer composition should be tuned to improve light harvesting enabling efficient charge transport. This work presents two new approaches to achieve higher photovoltaic performance for organic photovoltaic systems; thiol modification of the polymers for improved morphological features, and incorporation of ligand-free gold nanoparticles with surface plasmon absorption into the active layer to be stabilized by the covalent interaction with the thiol side groups of the polymers. To achieve this goal, a benzoxadiazole bearing polymer (POxT) and its bromine (POxT-Br) and thiol (POxT-SH) comprising derivatives were synthesized, their electrochemical, optical, photovoltaic, and morphological characterizations were performed. For photovoltaic characterizations, conventional device architecture of ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al was utilized, where the POxT-SH showed the highest JSC and PCE values, 6.52 mA/cm2 and 2.71%, respectively. Gold nanoparticles were synthesized via laser ablation method, and upon incorporation, the PCE value was boosted to 3.29%, with an increase of 21.4% compared to POxT-SH comprising organic solar cells.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback