Browsing by Author "Hadi, Seyed Ehsan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A [5]Rotaxane-Based photosensitizer for photodynamic therapy(WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Özkan, Melis; Keser, Yağmur; Hadi, Seyed Ehsan; Tuncel, DönüşA [5]rotaxane was synthesized through a catalytically self‐threading reaction in which CB6 serves as a macrocycle and acts as a catalyst for the 1,3‐dipolar cycloaddition reaction between the alkyne substituted porphyrin core and azide functionalized stopper groups by forming triazole. Application of this rotaxane as a photosensitizer in photodynamic therapy against cancer cells and in bacteria inactivation have also been demonstrated. This photosensitizer has an excellent water solubility and remains stable in biological media at physiological pH (7.4) for prolonged times. It has the ability to generate singlet oxygen efficiently; while it shows no dark cytotoxicity up to 300 µm to the MCF7 cancer cell line, it is photocytotoxic even at 2 µm and reduces the cell viability to around 70 % when exposed to white light. It also displays light‐triggered biocidal activity both against gram‐negative bacteria (Escherichia coli, E. coli) and gram‐positive bacteria (Bacillus subtilis). Upon white light irradiation for 1 min with a flux of 22 mW/cm2 of E. coli suspension incubated with [5]rotaxane (3.5 µm), a killing efficiency of 96 % is achieved, whereas in the dark the effect is recorded as only around 9 %.Item Open Access One-pot synthesis of hybrid core-shell nanoparticles for antibacterial photodynamic therapy(2019-07) Hadi, Seyed EhsanMultidrug resistance (MDR) in Escherichia coli (E. coli) has become a worrying issue that is not only increasingly observed in humans but also is widespread in veterinary medicine worldwide. Therefore, developing new and e ective alternatives to conventional antibiotics has become an imperative need. The idea of using photodynamic therapy (PDT) for bacterial eradication is a solution for the cases that the bacteria are resisting to conventional antibiotics. Although in these cases, PDT can be an option, PDT-killing efficiency might still not be sufficient, and some enhancements are necessary. Metal-enhanced singlet oxygen generation (ME1O2) is one of the ways to enhance the PDT-killing efficiency of the E. coli. Hybrid core-shell structures can serve conveniently for this purpose. These structures can combine the exible and tailorable features of polymers (shell) with the photophysical properties of plasmonic metals (core). In this work, using gold as a core and conjugated oligomer as a shell produced a novel hybrid core-shell nanoparticles which can enhance the singlet oxygen generation capacity and subsequently, improve the PDT-killing efficiency of the E. coli. In this structure, the shell is responsible for the spontaneous reduction of gold ions, forming gold nanoparticles and protecting them from the aggregation. With further investigation and optimization, the hybrid core-shell nanoparticles with the help of ME1O2 successfully improved the killing efficiency of E. coli bacteria by 40%.