BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Haderi, Redi"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    2-fold structures and homotopy theory
    (2023-01) Haderi, Redi
    It is well-known that correspondences between categories, also known as profunctors, serve in classifying functors. More precisely, every functor F : X → A straightens into a lax mapping χF : A → Catprof from A into a 2-category of categories and profunctors ([45]). We give a conceptual treatment of this fact from the lens of double category theory, contending the latter to be most natural environment to express this result. Then we venture into the world of simplicial sets and prove an analogous theorem. The notion of correspondence is easy to extend to simplicial sets, but a suitable double category may not be formed due to the lack of a natural tensor product. Nonetheless, we show that there is a natural simplicial category structure once we invoke higher correspondences. In proving our result we extend some notions from double category theory into the world of simplicial categories. As an application we obtain a realization of Lurie’s prediction that inner fibrations are classified by mappings into a higher category of correspondences between ∞-categories.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A simplicial category for higher correspondences
    (Springer Science and Business Media B.V., 2022-12-27) Haderi, Redi
    In this work we propose a realization of Lurie’s prediction that inner fibrations p : X → A are classified by A-indexed diagrams in a “higher category” whose objects are ∞-categories, morphisms are correspondences between them and higher morphisms are higher correspondences.We will obtain this as a corollary of a more general result which classifies all simplicial maps between ordinary simplicial sets in a similar fashion. Correspondences between simplicial sets (and ∞-categories) are a generalization of the concept of profunctor (or bimodule) pertaining to categories. While categories, functors and profunctors are organized in a double category, we will exhibit simplicial sets, simplicial maps, and correspondences as part of a simplicial category. This allows us to make precise statements and provide proofs. Our main tool is the language of double categories, which we use in the context of simplicial categories as well.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback