Browsing by Author "Gurbuz, A. C."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Autofocused spotlight SAR image reconstruction of off-grid sparse scenes(Institute of Electrical and Electronics Engineers Inc., 2017) Camlıca, S.; Gurbuz, A. C.; Arıkan, OrhanSynthetic aperture radar (SAR) has significant role in remote sensing. Phase errors due to uncompensated platform motion, measurement model mismatch, and measurement noise can cause degradations in SAR image reconstruction. For efficient processing of the measurements, image plane is discretized and autofocusing algorithms on this discrete grid are employed. However, in addition to the platform motion errors, the reflectors, which are not exactly on the reconstruction grid, also degrade the image quality. This is called the off-grid target problem. In this paper, a sparsity-based technique is developed for autofocused spotlight SAR image reconstruction that can correct phase errors due to uncompensated platform motion and provide robust images in the presence of off-grid targets. The proposed orthogonal matching pursuit-based reconstruction technique uses gradient descent parameter updates with built in autofocus. The technique can reconstruct high-quality images by using sub Nyquist rate of sampling on the reflected signals at the receiver. The results obtained using both simulated and real SAR system data show that the proposed technique provides higher quality reconstructions over alternative techniques in terms of commonly used performance metrics.Item Open Access Compressive sensing-based robust off-the-grid stretch processing(Institution of Engineering and Technology, 2017) Ilhan, I.; Gurbuz, A. C.; Arıkan, OrhanClassical stretch processing (SP) obtains high range resolution by compressing large bandwidth signals with narrowband receivers using lower rate analogue-to-digital converters. SP achieves the resolution of the large bandwidth signal by focusing into a limited range window, and by deramping in the analogue domain. SP offers moderate data rate for signal processing for high bandwidth waveforms. Furthermore, if the scene in the examined window is sparse, compressive sensing (CS)-based techniques have the potential to further decrease the required number of measurements. However, CS-based reconstructions are highly affected by model mismatches such as targets that are off-the-grid. This study proposes a sparsity-based iterative parameter perturbation technique for SP that is robust to targets off-the-grid in range or Doppler. The error between reconstructed and actual scenes is measured using Earth mover's distance metric. Performance analyses of the proposed technique are compared with classical CS and SP techniques in terms of data rate, resolution and signal-to-noise ratio. It is shown through simulations that the proposed technique offers robust and high-resolution reconstructions for the same data rate compared with both classical SP- and CS-based techniques.Item Open Access Perturbed orthogonal matching pursuit(IEEE, 2013) Teke, O.; Gurbuz, A. C.; Arıkan, OrhanCompressive Sensing theory details how a sparsely represented signal in a known basis can be reconstructed with an underdetermined linear measurement model. However, in reality there is a mismatch between the assumed and the actual bases due to factors such as discretization of the parameter space defining basis components, sampling jitter in A/D conversion, and model errors. Due to this mismatch, a signal may not be sparse in the assumed basis, which causes significant performance degradation in sparse reconstruction algorithms. To eliminate the mismatch problem, this paper presents a novel perturbed orthogonal matching pursuit (POMP) algorithm that performs controlled perturbation of selected support vectors to decrease the orthogonal residual at each iteration. Based on detailed mathematical analysis, conditions for successful reconstruction are derived. Simulations show that robust results with much smaller reconstruction errors in the case of perturbed bases can be obtained as compared to standard sparse reconstruction techniques.Item Open Access A robust compressive sensing based technique for reconstruction of sparse radar scenes(Academic Press, 2014) Teke, O.; Gurbuz, A. C.; Arıkan, OrhanPulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and stationary targets. For efficient processing of radar returns, delay-Doppler plane is discretized and FFT techniques are employed to compute matched filter output on this discrete grid. However, for targets whose delay-Doppler values do not coincide with the computation grid, the detection performance degrades considerably. Especially for detecting strong and closely spaced targets this causes miss detections and false alarms. This phenomena is known as the off-grid problem. Although compressive sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates, straightforward application of these techniques is significantly more sensitive to the off-grid problem. Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay-Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can be implemented in association with other greedy techniques, presently it is used within an orthogonal matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance metric based on Kullback-Leibler Divergence (KLD) is proposed to better characterize the error between actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are obtained for all the tested performance criteria for the proposed technique compared to conventional OMP and ℓ1 minimization techniques. © 2013 Elsevier Inc.Item Open Access Sparse ground-penetrating radar imaging method for off-the-grid target problem(SPIE, 2013) Gurbuz, A. C.; Teke, O.; Arıkan, OrhanSpatial sparsity of the target space in subsurface or through-the-wall imaging applications has been successfully used within the compressive-sensing framework to decrease the data acquisition load in practical systems, while also generating highresolution images. The developed techniques in this area mainly discretize the continuous target space into grid points and generate a dictionary of model data that is used in image-reconstructing optimization problems. However, for targets that do not coincide with the computation grid, imaging performance degrades considerably. This phenomenon is known as the off-grid problem. This paper presents a novel sparse ground-penetrating radar imaging method that is robust for off-grid targets. The proposed technique is an iterative orthogonal matching pursuit-based method that uses gradientbased steepest ascent-type iterations to locate the off-grid target. Simulations show that robust results with much smaller reconstruction errors are obtained for multiple off-grid targets compared to standard sparse reconstruction techniques. © 2013 SPIE and IS&T.