Browsing by Author "Gouverneur, B."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A multi-modal video analysis approach for car park fire detection(Elsevier, 2013) Verstockt, S.; Hoecke, S. V.; Beji, T.; Merci, B.; Gouverneur, B.; Çetin, A. Enis; Potter, P. D.; Walle, R. V. D.In this paper a novel multi-modal flame and smoke detector is proposed for the detection of fire in large open spaces such as car parks. The flame detector is based on the visual and amplitude image of a time-of-flight camera. Using this multi-modal information, flames can be detected very accurately by visual flame feature analysis and amplitude disorder detection. In order to detect the low-cost flame related features, moving objects in visual images are analyzed over time. If an object possesses high probability for each of the flame characteristics, it is labeled as candidate flame region. Simultaneously, the amplitude disorder is also investigated. Also labeled as candidate flame regions are regions with high accumulative amplitude differences and high values in all detail images of the amplitude image's discrete wavelet transform. Finally, when there is overlap of at least one of the visual and amplitude candidate flame regions, fire alarm is raised. The smoke detector, on the other hand, focuses on global changes in the depth images of the time-of-flight camera, which do not have significant impact on the amplitude images. It was found that this behavior is unique for smoke. Experiments show that the proposed detectors improve the accuracy of fire detection in car parks. The flame detector has an average flame detection rate of 93%, with hardly any false positive detection, and the smoke detection rate of the TOF based smoke detector is 88%.Item Open Access A multi-sensor network for the protection of cultural heritage(IEEE, 2011) Grammalidis, N.; Çetin, A. Enis; Dimitropoulos, K.; Tsalakanidou F.; Köse, Kıvanç; Günay, Osman; Gouverneur, B.; Torri, D.; Kuruoglu, E.; Tozzi, S.; Benazza, A.; Chaabane F.; Kosucu, B.; Ersoy, C.The paper presents a novel automatic early warning system to remotely monitor areas of archaeological and cultural interest from the risk of fire. Since these areas have been treasured and tended for very long periods of time, they are usually surrounded by old and valuable vegetation or situated close to forest regions, which exposes them to an increased risk of fire. The proposed system takes advantage of recent advances in multi-sensor surveillance technologies, using optical and infrared cameras, wireless sensor networks capable of monitoring different modalities (e.g. temperature and humidity) as well as local weather stations on the deployment site. The signals collected from these sensors are transmitted to a monitoring centre, which employs intelligent computer vision and pattern recognition algorithms as well as data fusion techniques to automatically analyze sensor information. The system is capable of generating automatic warning signals for local authorities whenever a dangerous situation arises, as well as estimating the propagation of the fire based on the fuel model of the area and other important parameters such as wind speed, slope, and aspect of the ground surface. © 2011 EURASIP.Item Open Access Video fire detection-Review(Elsevier, 2013) Çetin, A. Enis; Dimitropoulos, K.; Gouverneur, B.; Grammalidis, N.; Günay, O.; Habiboğlu, Y. H.; Töreyin, B. U.; Verstockt, S.This is a review article describing the recent developments in Video based Fire Detection (VFD). Video surveillance cameras and computer vision methods are widely used in many security applications. It is also possible to use security cameras and special purpose infrared surveillance cameras for fire detection. This requires intelligent video processing techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce the detection time compared to the currently available sensors in both indoors and outdoors because cameras can monitor "volumes" and do not have transport delay that the traditional "point" sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tilt-zoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they can provide crucial information about the size and growth of the fire, direction of smoke propagation.