Browsing by Author "Gigan, S."
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation(2014) Volpe G.; Volpe G.; Gigan, S.The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications.Item Open Access Controlling active brownian particles in complex settings(OSA, 2017) Velu, Sabareesh K. P.; Pinçe, Erçağ; Callegari, Agnese; Elahi, Parviz; Gigan, S.; Volpe, Giovanni; Volpe, G.We show active Brownian particles (passive Brownian particles in a bacterial bath) switches between two long-term behaviors, i.e. gathering and dispersal of individuals, in response to the statistical properties of the underlying optical potential.Item Open Access Disorder-mediated crowd control in an active matter system(Nature Publishing Group, 2016) Pinçe, E.; Velu, S. K. P.; Callegari, A.; Elahi, P.; Gigan, S.; Volpe, G.; Volpe, G.Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.Item Open Access Engineering particle trajectories in microfluidic flows using speckle light fields(SPIE, 2014) Volpe, G.; Volpe, Giovanni; Gigan, S.Optical tweezers have been widely used in physics, chemistry and biology to manipulate and trap microscopic and nanoscopic objects. Current optical trapping techniques rely on carefully engineered setups to manipulate nanoscopic and microscopic objects at the focus of a laser beam. Since the quality of the trapping is strongly dependent on the focus quality, these systems have to be very carefully aligned and optimized, thus limiting their practical applicability in complex environments. One major challenge for current optical manipulation techniques is the light scattering occurring in optically complex media, such as biological tissues, turbid liquids and rough surfaces, which give rise to apparently random light fields known as speckles. Here, we discuss an experimental implementation to perform optical manipulation based on speckles. In particular, we show how to take advantage of the statistical properties of speckle patterns in order to realize a setup based on a multimode optical fiber to perform basic optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications. © 2014 SPIE.Item Open Access Optical manipulation with random light fields: from fundamental physics to applications(OSA, 2015) Volpe, G.; Gigan, S.; Volpe, GiovanniSpeckles are random light fields that share some universal statistical properties. Because of this, they can be used to perform deterministic optical manipulation tasks on a Brownian particle as well as control its diffusion properties.Item Open Access Simulation of active Brownian particles in optical potentials(SPIE, 2014) Volpe, G.; Gigan, S.; Volpe, GiovanniOptical forces can affect the motion of a Brownian particle. For example, optical tweezers use optical forces to trap a particle at a desirable position. Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion in a confined potential can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion in an optical potential using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations.Item Open Access Simulation of the active brownian motion of a microswimmer(American Association of Physics Teachers, 2014) Volpe, G.; Gigan, S.; Volpe, G.Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution-a clear signature of their out-of-equilibrium nature-and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted. © 2014 American Association of Physics Teachers.Item Open Access Speckle optical tweezers: micromanipulation with random light fields(Optical Society of America, 2014-07-18) Volpe, G.; Kurtz, L.; Callegari, A.; Volpe, G.; Gigan, S.Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications. (C) 2014 Optical Society of AmericaItem Open Access Step-by-step guide to the realization of advanced optical tweezers(Optical Society of America, 2015-05-05) Pesce, G.; Volpe, G.; Marago, M. O.; Jones, H. P.; Gigan, S.; Sasso, A.; Volpe, G.ince the pioneering work of Arthur Ashkin, optical tweezers (OT) have become an indispensable tool for contactless manipulation of micro- and nanoparticles. Nowadays OT are employed in a myriad of applications demonstrating their importance. While the basic principle of OT is the use of a strongly focused laser beam to trap and manipulate particles, more complex experimental setups are required to perform novel and challenging experiments. With this article, we provide a detailed step-by-step guide for the construction of advanced optical manipulation systems. First, we explain how to build a single-beam OT on a homemade microscope and how to calibrate it. Improving on this design, we realize a holographic OT, which can manipulate independently multiple particles and generate more sophisticated wavefronts such as Laguerre–Gaussian beams. Finally, we explain how to implement a speckle OT, which permits one to employ random speckle light fields for deterministic optical manipulation.