Browsing by Author "Güneş, Damla"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Mineralocorticoid and glucocorticoid receptors as novel targets in breast and liver cancer therapies(2020-12) Güneş, DamlaCell signaling is a complex phenomenon and is maintained through intertwined signal transmissions within and in-between the cells. Anti-cancer therapies are often challenged by this fact due to crosstalk-associated activation of alternative survival routes. Hence, development of new treatment strategies and identification of novel prognostic markers depends on in-depth knowledge on cell signaling routes altered in cancer and possible crosstalk paths. Herein, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling, two closely related members of steroid receptor hormone family, and their possible crosstalk were studied across breast and liver cancer cell lines. In breast cancer cell lines, estrogen responsive and MR expressing T47D was used in order to study possible crosstalk among Estrogen receptor (ER) and MR. MR-GR ligand aldosterone (ALDO) and ER ligand estrogen (E2) administered to breast cancer cells alone and in combination and, MR, ER and GR and their downstream signaling members were studied employing qRT-PCR and Western blot assays. Furthermore, ALDO, E2, ALDO-E2 hormone administrations were also used for cell viability assessments. Our results implied possible interactions of ALDO-E2 signaling at the level of cell viability, and at mRNA levels of progesterone receptor. In liver cancer cell lines, MR and GR was investigated as targets of a novel treatment. Liver cancer subtype hepatocellular carcinoma (HCC) has high mortality rate with limited treatment options. Multi-kinase inhibitor Sorafenib (SFB) with mild effectivity is most known systemic therapy against HCC. To potentiate the effectiveness of SFB and overcome to the crosstalk associated limitations, combinatorial drug treatment approach targeting multiple signaling modalities has been adopted in literature. Previously in our lab, SFB was combined with repurposed anti-psychotic drug TFP as a novel combinatorial treatment against hepatocellular carcinoma (HCC) and liver cancer cell lines. Cellular viability was synergistically reduced by SFB-TFP in HCC cell line Hep3B, while antagonistic effects on viability in SkHep1 was apparent. Herein, two liver cancer cell lines Hep3B and SkHep1, were used in comparison to unravel mechanism of action of SFB-TFP combination at the protein level. Apoptosis, cell cycle, PI3K/AKT/mTOR and MAPK pathways were investigated in addition to MR and GR. Our results revealed several markers indicating success of drug combinations and targeted pathways at protein level which needs to be pursued further.Item Open Access Synthesis and structure of novel phenothiazine derivatives, and compound prioritization via in silico target search and screening for cytotoxic and cholinesterase modulatory activities in liver cancer cells and in vivo in zebrafish(American Chemical Society, 2024-06-03) Kisla, Mehmet Murat; Yaman, Murat; Zengin Karadayi,Fikriye; Korkmaz, Büşra; Bayazeid, Ömer; Kumar, Amrish; Peravali, Ravindra; Güneş, Damla; Tiryaki, Rafed Said; Gelinci, Emine; Çakan Akdoğan, Gülçin; Ateş Alagöz, Zeynep; Konu, ÖzlenPhenothiazines (PTZ) are antipsychotics known to modulate a variety of neurotransmitter activities that include dopaminergic and cholinergic signaling and have been identified as potential anticancer agents in vitro. However, it is important to also test whether a highly cytotoxic, repurposed, or novel PTZ has low toxicity and neuromodulatory activity in vivo using vertebrate model organisms, such as zebrafish. In this study, we synthesized novel phenothiazines and screened them in vitro in liver cancer and in vivo in zebrafish embryos/larvae. The syntheses of several intermediate PTZ 10-yl acyl chlorides were followed by elemental analysis and determination of 1H NMR and 13C NMR mass (ESI+) spectra of a large number of novel PTZ 10-carboxamides. Cytotoxicities of 28 PTZ derivatives (1–28) screened against Hep3B and SkHep1 liver cancer cell lines revealed five intermediate and five novel leads along with trifluoperazine (TFP), prochlorperazine (PCP), and perphenazine, which are relatively more cytotoxic than the basic PTZ core. Overall, the derivatives were more cytotoxic to Hep3B than SkHep1 cells. Moreover, in silico target screening identified cholinesterases as some of the commonest targets of the screened phenothiazines. Interestingly, molecular docking studies with acetylcholinesterase (AChE) and butyrylcholinesterase proteins showed that the most cytotoxic compounds 1, 3, PCP, and TFP behaved similar to Huprin W in their amino acid interactions with the AChE protein. The highly cytotoxic intermediate PTZ derivative 1 exhibited a relatively lower toxicity profile than those of 2 and 3 during the zebrafish development. It also modulated in vivo the cholinesterase activity in a dose-dependent manner while significantly increasing the total cholinesterase activity and/or ACHE mRNA levels, independent of the liver cancer cell type. Our screen also identified novel phenothiazines, i.e., 8 and 10, with significant cytotoxic and cholinesterase modulatory effects in liver cancer cells; yet both compounds had low levels of toxicity in zebrafish. Moreover, they modulated the cholinesterase activity or expression of ACHE in a cancer cell line-specific manner, and compound 10 significantly inhibited the cholinesterase activity in zebrafish. Accordingly, using a successful combination of in silico, in vitro, and in vivo approaches, we identified several lead anticancer and cholinesterase modulatory PTZ derivatives for future research.Item Open Access ZenoFishDb v1.1: a database for xenotransplantation studies in zebrafish(Mary Ann Liebert, 2020) Targen, Seniye; Kaya, Tuğberk; Avcı, M. E.; Güneş, Damla; Keşküş, Ayşe Gökçe; Konu, ÖzlenRapidly accumulating literature has proven feasibility of the zebrafish xenograft models in cancer research. Nevertheless, online databases for searching the current zebrafish xenograft literature are in great demand. Herein, we have developed a manually curated database, called ZenoFishDb v1.1 (https://konulab.shinyapps.io/zenofishdb), based on R Shiny platform aiming to provide searchable information on ever increasing collection of zebrafish studies for cancer cell line transplantation and patient-derived xenografts (PDXs). ZenoFishDb v1.1 user interface contains four modules: DataTable, Visualization, PDX Details, and PDX Charts. The DataTable and Visualization pages represent xenograft study details, including injected cell lines, PDX injections, molecular modifications of cell lines, zebrafish strains, as well as technical aspects of the xenotransplantation procedures in table, bar, and/or pie chart formats. The PDX Details module provides comprehensive information on the patient details in table format and can be searched and visualized. Overall, ZenoFishDb v1.1 enables researchers to effectively search, list, and visualize different technical and biological attributes of zebrafish xenotransplantation studies particularly focusing on the new trends that make use of reporters, RNA interference, overexpression, or mutant gene constructs of transplanted cancer cells, stem cells, and PDXs, as well as distinguished host modifications.