Browsing by Author "Foss, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Growth of Ge nanoparticles on SiO2 / Si interfaces during annealing of plasma enhanced chemical vapor deposited thin films(Elsevier B.V., 2007) Foss, S.; Finstad, T. G.; Dana, A.; Aydınlı, AtillaMultilayer germanosilicate (Ge:SiO2) films have been grown by plasma enhanced chemical vapor deposition. Each Ge:SiO2 layer is separated by a pure SiO2 layer. The samples were heat treated at 900 °C for 15 and 45 min. Transmission electron microscopy investigations show precipitation of particles in the layers of highest Ge concentration. Furthermore there is evidence of diffusion between the layers. This paper focuses mainly on observed growth of Ge particles close to the interface, caused by Ge diffusion from the Ge:SiO2 layer closest to the interface through a pure SiO2 layer and to the interface. The particles grow as spheres in a direction away from the interface. Particles observed after 15 min anneal time are 4 nm in size and are amorphous, while after 45 min anneal time they are 7 nm in size and have a crystalline diamond type Ge structure.Item Open Access Spectroscopic ellipsometric study of Ge nanocrystals embedded in SiO 2 using parametric models(Wiley, 2008-05) Basa, P.; Petrik, P.; Fried, M.; Dâna, Aykutlu; Aydınlı, Atilla; Foss, S.; Finstad, T. G.Ge-rich SiO2 layers on top of Si substrates were deposited using plasma enhanced chemical vapour deposition. Ge nanocrystals embedded in the SiO2 layers were formed by high temperature annealing. The samples were measured and evaluated by spectroscopic ellipsometry. Effective medium theory (EMT) and parametric semiconductor models have been used to model the dielectric function of the layers. Systematic dependences of the layer thickness and the oscillator parameters have been found on the annealing temperature (nanocrystal size).