BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Foroutan-Barenji, Sina"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    All-colloidal parity–time-symmetric microfiber lasers balanced between the gain of colloidal quantum wells and the loss of colloidal metal nanoparticles
    (Royal Society of Chemistry, 2022-08-23) Foroutan-Barenji, Sina; Shabani, Farzan; Işık, Ahmet Tarik; Dikmen, Zeynep; Demir, Hilmi Volkan
    Lasers based on semiconductor colloidal quantum wells (CQWs) have attracted wide attention, thanks to their facile solution-processability, low threshold and wide range spectral tunability. Colloidal microlasers based on whispering-gallery-mode (WGM) resonators have already been widely demonstrated. However, due to their microscale size typically supporting multiple modes, they suffer from multimode competition and higher threshold. The ability to control the multiplicity of modes oscillating within colloidal laser resonators and achieving single-mode lasers is of fundamental importance in many photonic applications. Here we show that as a unique, simple and versatile architecture of all-colloidal lasers intrinsically enabled by balanced gain/loss segments, the lasing threshold reduction and spectral purification can be readily achieved in a system of a WGM-supported microfiber cavity by harnessing the notions of parity–time symmetry (PT). In particular, we demonstrate a proof-of-concept PT-symmetric microfiber laser employing CQWs as the colloidal gain medium along with a carefully tuned nanocomposite of Ag nanoparticles (Ag NPs) incorporated into a PMMA matrix altogether and conveniently coated around a coreless microfiber as a rigorously tailored colloidal loss medium to balance the gain. The realization of gain/loss segments in our PT-symmetric all-colloidal arrangement is independent of selected pumping, reducing the complexity of the system and making compact device applications feasible, where control over the pumping is not possible. We observed a reduction in the number of modes, resulting in a reduced threshold and enhanced output power of the PT-symmetric laser. The PT-symmetric CQW-WGM microcavity architecture offers new opportunities towards simple implementation of high-performance optical resonators for colloidal lasers.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical gain in ultrathin self‐assembled bi‐layers of colloidal quantum wells enabled by the mode confinement in their high‐index dielectric waveguides
    (Wiley-VCH Verlag, 2020) Foroutan-Barenji, Sina; Erdem, Onur; Gheshlaghi, Negar; Altıntaş, Yemliha; Demir, Hilmi Volkan
    This study demonstrates an ultra‐thin colloidal gain medium consisting of bi‐layers of colloidal quantum wells (CQWs) with a total film thickness of 14 nm integrated with high‐index dielectrics. To achieve optical gain from such an ultra‐thin nanocrystal film, hybrid waveguide structures partly composed of self‐assembled layers of CQWs and partly high‐index dielectric material are developed and shown: in asymmetric waveguide architecture employing one thin film of dielectric underneath CQWs and in the case of quasi‐symmetric waveguide with a pair of dielectric films sandwiching CQWs. Numerical modeling indicates that the modal confinement factor of ultra‐thin CQW films is enhanced in the presence of the adjacent dielectric layers significantly. The active slabs of these CQW monolayers in the proposed waveguide structure are constructed with great care to obtain near‐unity surface coverage, which increases the density of active particles, and to reduce the surface roughness to sub‐nm scale, which decreases the scattering losses. The excitation and propagation of amplified spontaneous emission (ASE) along these active waveguides are experimentally demonstrated and numerically analyzed. The findings of this work offer possibilities for the realization of ultra‐thin electrically driven colloidal laser devices, providing critical advantages including single‐mode lasing and high electrical conduction.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Self-resonant microlasers of colloidal quantum wells constructed by direct deep patterning
    (American Chemical Society, 2021-06-09) Gheshlaghi, Negar; Foroutan-Barenji, Sina; Erdem, Onur; Altintas, Yemliha; Shabani, Farzan; Humayun, Muhammad Hamza; Demir, Hilmi Volkan
    Here, the first account of self-resonant fully colloidal μ-lasers made from colloidal quantum well (CQW) solution is reported. A deep patterning technique is developed to fabricate well-defined high aspect-ratio on-chip CQW resonators made of grating waveguides and in-plane reflectors. The fabricated waveguide-coupled laser, enabling tight optical confinement, assures in-plane lasing. CQWs of the patterned layers are closed-packed with sharp edges and residual-free lifted-off surfaces. Additionally, the method is successfully applied to various nanoparticles including colloidal quantum dots and metal nanoparticles. It is observed that the patterning process does not affect the nanocrystals (NCs) immobilized in the attained patterns and the different physical and chemical properties of the NCs remain pristine. Thanks to the deep patterning capability of the proposed method, patterns of NCs with subwavelength lateral feature sizes and micron-scale heights can possibly be fabricated in high aspect ratios.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Single-mode lasing from a single 7 nm thick monolayer of colloidal quantum wells in a monolithic microcavity
    (Wiley-VCH Verlag, 2021-03-03) Foroutan-Barenji, Sina; Erdem, Onur; Delikanlı, Savaş; Yağcı, Hüseyin Bilge; Gheshlaghi, Negar; Altıntaş, Yemliha; Demir, Hilmi Volkan
    In this work, monolithically-fabricated vertical cavity surface emitting lasers (VCSELs) of densely-packed, orientation-controlled, atomically flat colloidal quantum wells (CQWs) using a self-assembly method is reported and single-mode lasing from a record thin colloidal gain medium with a film thickness of 7 nm under femtosecond optical excitation is demonstrated. Specially engineered CQWs are used to demonstrate these hybrid CQW-VCSELs consisting of only a few layers to a single monolayer of CQWs and are achieved the lasing from these thin gain media by thoroughly modeling and implementing a vertical cavity consisting of distributed Bragg reflectors with an additional dielectric layer for mode tuning. Accurate spectral and spatial alignment of the cavity mode with the CQW films is secured with the help of full electromagnetic computations. While overcoming the long-pending problem of limited electrical conductivity in thicker colloidal films, such ultrathin colloidal gain media can be helpful to enable fully electrically-driven colloidal lasers.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback