Browsing by Author "Fidan, B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Localization and Tracking of Implantable Biomedical Sensors(MDPI AG, 2017) Umay, I.; Fidan, B.; Barshan, B.Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.Item Open Access Multi-stage neural networks with application to motion planning of a mechanical snake(IEEE, 2003-06) Fidan, B.; Sezer, Erol; Akar, M.An efficient approach to nonlinear control problems in which the plant is to be driven to a desired state using a neural network controller in a number of steps is by representing the whole process as a multi - stage neural network. In this paper, an explicit formulation of the back propagation algorithm is developed for such networks. Later, this approach is used to build up a path planner for a mechanical snake (a robot composed of a sequence of articulated links). This path planner, together with a tracking algorithm, is shown to get the mechanical snake out of a collision-free closed region.