Browsing by Author "Ferhatosmanoğlu, Hakan"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Çağrı merkezi metin madenciliği yaklaşımı(IEEE, 2017-05) Yiğit, İ. O.; Ateş, A. F.; Güvercin, Mehmet; Ferhatosmanoğlu, Hakan; Gedik, BuğraGünümüzde çağrı merkezlerindeki görüşme kayıtlarının sesten metne dönüştürülebilmesi görüşme kaydı metinleri üzerinde metin madenciliği yöntemlerinin uygulanmasını mümkün kılmaktadır. Bu çalışma kapsamında görüşme kaydı metinleri kullanarak görüşmenin içeriğinin duygu yönünden (olumlu/olumsuz) değerlendirilmesi, müşteri memnuniyetinin ve müşteri temsilcisi performansının ölçülmesi amaçlanmaktadır. Yapılan çalışmada görüşme kaydı metinlerinden metin madenciliği yöntemleri ile yeni özellikler çıkarılmıştır. Metinlerden elde edilen özelliklerden yararlanılarak sınıflandırma ve regresyon yöntemleriyle görüşme kayıtlarının içeriklerinin değerlendirilmesini sağlayacak tahmin modelleri oluşturulmuştur. Bu çalışma sonucunda ortaya çıkarılan tahmin modellerinin Türk Telekom bünyesindeki çağrı merkezlerinde kullanılması hedeflenmektedir.Item Open Access A large-scale sentiment analysis for Yahoo! Answers(ACM, 2012) Küçüktunç, O.; Cambazoğlu, B. B.; Weber, I.; Ferhatosmanoğlu, HakanSentiment extraction from online web documents has recently been an active research topic due to its potential use in commercial applications. By sentiment analysis, we refer to the problem of assigning a quantitative positive/negative mood to a short bit of text. Most studies in this area are limited to the identification of sentiments and do not investigate the interplay between sentiments and other factors. In this work, we use a sentiment extraction tool to investigate the influence of factors such as gender, age, education level, the topic at hand, or even the time of the day on sentiments in the context of a large online question answering site. We start our analysis by looking at direct correlations, e.g., we observe more positive sentiments on weekends, very neutral ones in the Science & Mathematics topic, a trend for younger people to express stronger sentiments, or people in military bases to ask the most neutral questions. We then extend this basic analysis by investigating how properties of the (asker, answerer) pair affect the sentiment present in the answer. Among other things, we observe a dependence on the pairing of some inferred attributes estimated by a user's ZIP code. We also show that the best answers differ in their sentiments from other answers, e.g., in the Business & Finance topic, best answers tend to have a more neutral sentiment than other answers. Finally, we report results for the task of predicting the attitude that a question will provoke in answers. We believe that understanding factors influencing the mood of users is not only interesting from a sociological point of view, but also has applications in advertising, recommendation, and search. Copyright 2012 ACM.Item Open Access LineKing: Crowdsourced line wait-time estimation using smartphones(Springer, 2013) Bulut, M. F.; Yilmaz, Y. S.; Demirbaş, M.; Ferhatosmanoğlu, N.; Ferhatosmanoğlu, HakanThis paper describes the design, implementation and deployment of LineKing (LK), a crowdsourced line wait-time monitoring service. LK consists of a smartphone component (that provides automatic, energy-efficient, and accurate wait-time detection), and a cloud backend (that uses the collected data to provide accurate wait-time estimation). LK is used on a daily basis by hundreds of users to monitor the wait-times of a coffee shop in our university campus. The novel wait-time estimation algorithms deployed at the cloud backend provide mean absolute errors of less than 2-3 minutes. © 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.Item Open Access Link recommendation in P2P social networks(WOSS, 2012) Aytaş, Yusuf; Ferhatosmanoğlu, Hakan; Ulusoy, ÖzgürSocial networks have been mostly based on a centralized infrastructure where the owner hosts all the data and services. This model of “fat server & thin clients” results in many systems and practical problems such as privacy, censorship, scalability, and fault-tolerance. While a P2P infrastructure would be a natural alternative for implementing social networks, it has surprisingly not attracted enough attention yet. Significant research is needed to develop a P2P social network system. From an algorithmic perspective, most graph algorithms for social networks assume that the global graph is available. These need to be revisited in a P2P setting where the nodes have limited information with connectivity to only their neighbors. Following these observations, in this paper, we focus on social network link recommendation problem in a P2P setting. We investigate methods to recommend links to improve social connections as well as the efficiency of the overlay network. We evaluate our methods with respect to measures developed for P2P social networks.Item Open Access Location recommendations for new businesses using check-in data(IEEE, 2016-12) Eravci, Bahaeddin; Bulut, Neslihan; Etemoğlu, C.; Ferhatosmanoğlu, HakanLocation based social networks (LBSN) and mobile applications generate data useful for location oriented business decisions. Companies can get insights about mobility patterns of potential customers and their daily habits on shopping, dining, etc.To enhance customer satisfaction and increase profitability. We introduce a new problem of identifying neighborhoods with a potential of success in a line of business. After partitioning the city into neighborhoods, based on geographical and social distances, we use the similarities of the neighborhoods to identify specific neighborhoods as candidates for investment for a new business opportunity. We present two solutions for this new problem: i) a probabilistic approach based on Bayesian inference for location selection along with a voting based approximation, and ii) an adaptation of collaborative filtering using the similarity of neighborhoods based on co-existence of related venues and check-in patterns. We use Foursquare user check-in and venue location data to evaluate the performance of the proposed approach. Our experiments show promising results for identifying new opportunities and supporting business decisions using increasingly available check-in data sets. © 2016 IEEE.Item Open Access Predicting optimal facility location without customer locations(ACM, 2017-08) Yilmaz, Emre; Elbaşı, Sanem; Ferhatosmanoğlu, HakanDeriving meaningful insights from location data helps businesses make better decisions. One critical decision made by a business is choosing a location for its new facility. Optimal location queries ask for a location to build a new facility that optimizes an objective function. Most of the existing works on optimal location queries propose solutions to return best location when the set of existing facilities and the set of customers are given. However, most businesses do not know the locations of their customers. In this paper, we introduce a new problem setting for optimal location queries by removing the assumption that the customer locations are known. We propose an optimal location predictor which accepts partial information about customer locations and returns a location for the new facility. The predictor generates synthetic customer locations by using given partial information and it runs optimal location queries with generated location data. Experiments with real data show that the predictor can find the optimal location when sufficient information is provided. © 2017 Copyright held by the owner/author(s).Item Open Access Topic-based influence computation in social networks under resource constraints(Institute of Electrical and Electronics Engineers, 2019) Bingöl, Kaan; Eravcı, Bahaeddin; Etemoğlu, Ç. Ö.; Ferhatosmanoğlu, Hakan; Gedik, BuğraAs social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining influential users as the social network evolves. We propose an algorithm to probe the relationships (required for global influence computation) as well as posts (required for topic-based influence computation) of a limited number of users during each probing period, based on the influence trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network inference. We employ PageRank as the metric for influence computation. We illustrate how the proposed solution maintains accurate PageRank scores for computing global influence, and topic-sensitive weighted PageRank scores for topic-based influence. The latter relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We evaluate the effectiveness of our algorithms by comparing them with the true influence scores of the full and up-to-date version of the network, using data from the micro-blogging service Twitter. Results show that our techniques significantly outperform baseline methods (80 percent higher accuracy for network fetching and 77 percent for text fetching) and are superior to state-of-the-art techniques from the literature (21 percent higher accuracy).Item Open Access Understanding and predicting trends in urban freight transport(IEEE, 2017-05-06) Mrazovic, P.; Eravci, Bahaeddin; Larriba-Pey, J. L.; Ferhatosmanoğlu, Hakan; Matskin, M.Among different components of urban mobility, urban freight transport is usually considered as the least sustainable. Limited traffic infrastructures and increasing demands in dense urban regions lead to frequent delivery runs with smaller freight vehicles. This increases the traffic in urban areas and has negative impacts upon the quality of life in urban populations. Data driven optimizations are essential to better utilize existing urban transport infrastructures and to reduce the negative effects of freight deliveries for the cities. However, there is limited work and data driven research on urban delivery areas and freight transportation networks. In this paper, we collect and analyse data on urban freight deliveries and parking areas towards an optimized urban freight transportation system. Using a new check-in based mobile parking system for freight vehicles, we aim to understand and optimize freight distribution processes. We explore the relationship between areas' availability patterns and underlying traffic behaviour in order to understand the trends in urban freight transport. By applying the detected patterns we predict the availabilities of loading/unloading areas, and thus open up new possibilities for delivery route planning and better managing of freight transport infrastructures. © 2017 IEEE.