BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Erdoǧan, M."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses
    (Nature publishing group, 2013) Öktem, B.; Pavlov, I.; Ilday, S.; Kalaycıoǧlu, H.; Rybak, A.; Yavaş, S.; Erdoǧan, M.; Ilday F. Ö.
    Dynamical systems based on the interplay of nonlinear feedback mechanisms are ubiquitous in nature. Well-understood examples from photonics include mode locking and a broad class of fractal optics, including self-similarity. In addition to the fundamental interest in such systems, fascinating technical functionalities that are difficult or even impossible to achieve with linear systems can emerge naturally from them if the right control tools can be applied. Here, we demonstrate a method that exploits positive nonlocal feedback to initiate, and negative local feedback to regulate, the growth of ultrafast laser-induced metal-oxide nanostructures with unprecedented uniformity, at high speed, low cost and on non-planar or flexible surfaces. The nonlocal nature of the feedback allows us to stitch the nanostructures seamlessly, enabling coverage of indefinitely large areas with subnanometre uniformity in periodicity. We demonstrate our approach through the fabrication of titanium dioxide and tungsten oxide nanostructures, but it can also be extended to a large variety of other materials.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Surface texturing of dental implant surfaces with an ultrafast fiber laser
    (Optical Society of America, 2010) Öktem, Bülent; Kalaycıoğlu, Hamit; Erdoǧan, M.; Yavaş, S.; Mukhopadhyay P.; Tazebay, Uygar Halis; Aykaç, Y.; Eken, K.; İlday, F. Ömer
    Controlled modification of implant surfaces using femtosecond, picosecond and nanosecond pulses from home-built all-fiber-integrated lasers is demonstrated. Picosecond and femtosecond pulses offer superior control over the surface texture. Increasing cell attachment to surface is discussed. ©2010 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers
    (Optical Society of American (OSA), 2011) Erdoǧan, M.; Öktem, B.; Kalaycioǧlu H.; Yavaş, S.; Mukhopadhyay P.K.; Eken, K.; Özgören, K.; Aykaç, Y.; Tazebay, U.H.; Ilday F.O.
    We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns. © 2011 Optical Society of America.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback