Browsing by Author "Erdem, O."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Alloyed heterostructures of CdSexS1-x nanoplatelets with highly tunable optical gain performance(American Chemical Society, 2017) Kelestemur Y.; Dede, D.; Gungor K.; Usanmaz, C. F.; Erdem, O.; Demir, Hilmi VolkanHere, we designed and synthesized alloyed heterostructures of CdSexS1-x nanoplatelets (NPLs) using CdS coating in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSexS1-x core NPLs as a seed, we prepared CdSexS1-x/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSexS1-x cores, we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together with increased absorption cross-section and improved stability without changing the emission spectrum of CdSexS1-x alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSexS1-x/CdS core/shell NPLs. Depending on the sulfur composition of the CdSexS1-x core and thickness of the CdS shell, CdSexS1-x/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560-650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSexS1-x alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSexS1-x based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to ∼53 μJ/cm2.Item Open Access CdSe/CdSe1-xTex core/crown heteronanoplatelets: tuning the excitonic properties without changing the thickness(American Chemical Society, 2017) Kelestemur Y.; Guzelturk, B.; Erdem, O.; Olutas M.; Erdem, T.; Usanmaz, C. F.; Gungor K.; Demir, Hilmi VolkanHere we designed and synthesized CdSe/CdSe1-xTex core/crown nanoplatelets (NPLs) with controlled crown compositions by using the core-seeded-growth approach. We confirmed the uniform growth of the crown regions with well-defined shape and compositions by employing transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. By precisely tuning the composition of the CdSe1-xTex crown region from pure CdTe (x = 1.00) to almost pure CdSe doped with several Te atoms (x = 0.02), we achieved tunable excitonic properties without changing the thickness of the NPLs and demonstrated the evolution of type-II electronic structure. Upon increasing the Te concentration in the crown region, we obtained continuously tunable photoluminescence peaks within the range of ∼570 nm (for CdSe1-xTex crown with x = 0.02) and ∼660 nm (for CdSe1-xTex crown with x = 1.00). Furthermore, with the formation of the CdSe1-xTex crown region, we observed substantially improved photoluminescence quantum yields (up to ∼95%) owing to the suppression of nonradiative hole trap sites. Also, we found significantly increased fluorescence lifetimes from ∼49 up to ∼326 ns with increasing Te content in the crown, suggesting the transition from quasi-type-II to type-II electronic structure. With their tunable excitonic properties, this novel material presented here will find ubiquitous use in various efficient light-emitting and -harvesting applications.Item Open Access Exciton dynamics of colloidal semiconductor quantum well stacks(Springer Netherlands, 2018) Erdem, O.; Guzelturk, B.; Olutas M.; Kelestemur Y.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) have recently emerged as a new class of colloidal nanocrystals. NPLs are quasi two-dimensional nanocrystals having atomically flat surfaces and have unique properties such as narrow photoluminescence (PL) emission (∼10 nm) and giant oscillator strength. NPLs can be self-assembled into stacks. These are one-dimensional superstructures that can contain tens or hundreds of NPLs in one chain. We studied how stacking modifies the optical properties of NPLs. We found that PL quantum yield and exciton lifetime are reduced with increased degree of stacking in NPL ensembles. Moreover, we showed that temperature-dependent behavior of stacked NPLs is significantly different than the nonstacked ones. We developed two statistical models that account for the ultra-fast nonradiative energy transfer within stacked NPL chains as well as nonemissive subpopulation of NPLs in the ensemble to explain the aforementioned changes when NPLs are stacked.Item Open Access Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/cdS nanoplatelets to a monolayer of MoS2(American Chemical Society, 2018) Taghipour, N.; Martinez, P. L. H.; Ozden, A.; Olutas M.; Dede, D.; Gungor K.; Erdem, O.; Perkgoz, N. K.; Demir, Hilmi VolkanA hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS2 monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns-1. Using an Al2O3 separating layer between CdSe/CdS and MoS2 with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d-2 for the donor of CdSe/CdS NPLs and the acceptor of the MoS2 monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d-2 system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS2. This d-2 dependency results in an extraordinarily long Förster radius of ∼33 nm.Item Open Access Nonradiative energy transfer in colloidal CdSe nanoplatelet films(Royal Society of Chemistry, 2015) Güzeltürk, B.; Olutas M.; Delikanlı, S.; Keleştemur, Y.; Erdem, O.; Demir, Hilmi VolkanNonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy. NRET takes place from the NPLs with smaller vertical thickness (i.e., larger band gap) to the ones with a larger vertical thickness (i.e., smaller band gap) with efficiency up to ∼60%. Here, we reveal that the NRET efficiency is limited in these NPL solid film assemblies due to the self-stacking of NPLs within their own population causing an increased distance between the donor-acceptor pairs, which is significantly different to previously studied colloidal quantum dot based architectures for nonradiative energy transfer. © The Royal Society of Chemistry 2015.Item Open Access Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core / Crown@Shell Heteronanoplatelets(Wiley-VCH Verlag, 2016) Kelestemur Y.; Guzelturk, B.; Erdem, O.; Olutas M.; Gungor K.; Demir, Hilmi VolkanHere, the CdSe/CdS@CdS core/crown@shell heterostructured nanoplatelets (NPLs) resembling a platelet-in-box structure are developed and successfully synthesized. It is found that the core/crown@shell NPLs exhibit consistently substantially improved photoluminescence quantum yield compared to the core@shell NPLs regardless of their CdSe-core size, CdS-crown size, and CdS-shell thickness. This enhancement in quantum yield is attributed to the passivation of trap sites resulting from the critical peripheral growth with laterally extending CdS-crown layer before the vertical shell growth. This is also verified with the disappearance of the fast nonradiative decay component in the core/crown NPLs from the time-resolved fluorescence spectroscopy. When compared to the core@shell NPLs, the core/crown@shell NPLs exhibit relatively symmetric emission behavior, accompanied with suppressed lifetime broadening at cryogenic temperatures, further suggesting the suppression of trap sites. Moreover, constructing both the CdS-crown and CdS-shell regions, significantly enhanced absorption cross-section is achieved. This, together with the suppressed Auger recombination, enables the achievement of the lowest threshold amplified spontaneous emission (≈20 μJ cm−2) from the core/crown@shell NPLs among all different architectures of NPLs. These findings indicate that carefully heterostructured NPLs will play a critical role in building high-performance colloidal optoelectronic devices, which may even possibly challenge their traditional epitaxially grown thin-film based counterparts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access Stacking in colloidal nanoplatelets: tuning excitonic properties(American Chemical Society, 2014) Guzelturk, B.; Erdem, O.; Olutas M.; Kelestemur Y.; Demir, Hilmi VolkanColloidal semiconductor quantum wells, also commonly known as nanoplatelets (NPLs), have arisen among the most promising materials for light generation and harvesting applications. Recently, NPLs have been found to assemble in stacks. However, their emerging characteristics essential to these applications have not been previously controlled or understood. In this report, we systematically investigate and present excitonic properties of controlled column-like NPL assemblies. Here, by a controlled gradual process, we show that stacking in colloidal quantum wells substantially increases exciton transfer and trapping. As NPLs form into stacks, surprisingly we find an order of magnitude decrease in their photoluminescence quantum yield, while the transient fluorescence decay is considerably accelerated. These observations are corroborated by ultraefficient Forster resonance energy transfer (FRET) in the stacked NPLs, in which exciton migration is estimated to be in the ultralong range (>100 nm). Homo-FRET (i.e., FRET among the same emitters) is found to be ultraefficient, reaching levels as high as 99.9% at room temperature owing to the close-packed collinear orientation of the NPLs along with their large extinction coefficient and small Stokes shift, resulting in a large Forster radius of similar to 13.5 nm. Consequently, the strong and long-range homo-FRET boosts exciton trapping in nonemissive NPLs, acting as exciton sink centers, quenching photoluminescence from the stacked NPLs due to rapid nonradiative recombination of the trapped excitons. The rate-equation-based model, which considers the exciton transfer and the radiative and nonradiative recombination within the stacks, shows an excellent match with the experimental data. These results show the critical significance of stacking control in NPL solids, which exhibit completely different signatures of homo-FRET as compared to that in colloidal nanocrystals due to the absence of inhomogeneous broadening.Item Open Access Temperature-dependent emission kinetics of colloidal semiconductor nanoplatelets strongly modified by stacking(American Chemical Society, 2016) Erdem, O.; Olutas M.; Guzelturk, B.; Kelestemur Y.; Demir, Hilmi VolkanWe systematically studied temperature-dependent emission kinetics in solid films of solution-processed CdSe nanoplatelets (NPLs) that are either intentionally stacked or nonstacked. We observed that the steady-state photoluminescence (PL) intensity of nonstacked NPLs considerably increases with decreasing temperature, whereas there is only a slight increase in stacked NPLs. Furthermore, PL decay time of the stacked NPL ensemble is comparatively much shorter than that of the nonstacked NPLs, and this result is consistent at all temperatures. To account for these observations, we developed a probabilistic model that describes excitonic processes in a stack using Markov chains, and we found excellent agreement between the model and experimental results. These findings develop the insight that the competition between the radiative channels and energy transfer-assisted hole trapping leads to weakly temperature-dependent PL intensity in the case of the stacked NPL ensembles as compared to the nonstacked NPLs lacking strong energy transfer. This study shows that it is essential to account for the effect of NPL stacking to understand their resulting PL emission properties.