Browsing by Author "Dulek, Berkan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Optimal joint modulation classification and symbol decoding(IEEE, 2019-05) Kazıklı, Ertan; Dulek, Berkan; Gezici, SinanIn this paper, modulation classification and symbol decoding problems are jointly considered and optimal strategies are proposed under various settings. In the considered framework, there exist a number of candidate modulation formats and the aim is to decode a sequence of received signals with an unknown modulation scheme. To that aim, two different formulations are proposed. In the first formulation, the prior probabilities of the modulation schemes are assumed to be known and a formulation is proposed under the Bayesian framework. This formulation takes a constrained approach in which the objective function is related to symbol decoding performance whereas the constraint is related to modulation classification performance. The second formulation, on the other hand, addresses the case in which the prior probabilities of the modulation schemes are unknown, and provides a method under the minimax framework. In this case, a constrained approach is employed as well; however, the introduced performance metrics differ from those in the first formulation due to the absence of the prior probabilities of the modulation schemes. Finally, the performance of the proposed methods is illustrated through simulations. It is demonstrated that the proposed techniques improve the introduced symbol detection performance metrics via relaxing the constraint(s) on the modulation classification performance compared with the conventional techniques in a variety of system configurations.Item Open Access Optimal signaling and detector design for power constrained on-off keying systems in Neyman-Pearson framework(IEEE, 2011) Dulek, Berkan; Gezici, SinanOptimal stochastic signaling and detector design are studied for power constrained on-off keying systems in the presence of additive multimodal channel noise under the Neyman-Pearson (NP) framework. The problem of jointly designing the signaling scheme and the decision rule is addressed in order to maximize the probability of detection without violating the constraints on the probability of false alarm and the average transmit power. Based on a theoretical analysis, it is shown that the optimal solution can be obtained by employing randomization between at most two signal values for the on-signal (symbol 1) and using the corresponding NP-type likelihood ratio test at the receiver. As a result, the optimal parameters can be computed over a significantly reduced optimization space instead of an infinite set of functions using global optimization techniques. Finally, a detection example is provided to illustrate how stochastic signaling can help improve detection performance over various optimal and sub-optimal signaling schemes. © 2011 IEEE.