BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dulek, Berkan"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal joint modulation classification and symbol decoding
    (IEEE, 2019-05) Kazıklı, Ertan; Dulek, Berkan; Gezici, Sinan
    In this paper, modulation classification and symbol decoding problems are jointly considered and optimal strategies are proposed under various settings. In the considered framework, there exist a number of candidate modulation formats and the aim is to decode a sequence of received signals with an unknown modulation scheme. To that aim, two different formulations are proposed. In the first formulation, the prior probabilities of the modulation schemes are assumed to be known and a formulation is proposed under the Bayesian framework. This formulation takes a constrained approach in which the objective function is related to symbol decoding performance whereas the constraint is related to modulation classification performance. The second formulation, on the other hand, addresses the case in which the prior probabilities of the modulation schemes are unknown, and provides a method under the minimax framework. In this case, a constrained approach is employed as well; however, the introduced performance metrics differ from those in the first formulation due to the absence of the prior probabilities of the modulation schemes. Finally, the performance of the proposed methods is illustrated through simulations. It is demonstrated that the proposed techniques improve the introduced symbol detection performance metrics via relaxing the constraint(s) on the modulation classification performance compared with the conventional techniques in a variety of system configurations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal signaling and detector design for power constrained on-off keying systems in Neyman-Pearson framework
    (IEEE, 2011) Dulek, Berkan; Gezici, Sinan
    Optimal stochastic signaling and detector design are studied for power constrained on-off keying systems in the presence of additive multimodal channel noise under the Neyman-Pearson (NP) framework. The problem of jointly designing the signaling scheme and the decision rule is addressed in order to maximize the probability of detection without violating the constraints on the probability of false alarm and the average transmit power. Based on a theoretical analysis, it is shown that the optimal solution can be obtained by employing randomization between at most two signal values for the on-signal (symbol 1) and using the corresponding NP-type likelihood ratio test at the receiver. As a result, the optimal parameters can be computed over a significantly reduced optimization space instead of an infinite set of functions using global optimization techniques. Finally, a detection example is provided to illustrate how stochastic signaling can help improve detection performance over various optimal and sub-optimal signaling schemes. © 2011 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback