Browsing by Author "Djema, W."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A practical cell density stabilization technique through drug infusions: a simple pathfinding approach(IEEE - Institute of Electrical and Electronics Engineers, 2023-07-17) Djema, W.; Bonnet, C.; Özbay, Hitay; Mazenc, F.We consider a nonlinear system with distributed delays modeling cell population dynamics, where the parameters depend on growth-factor concentrations. A change in one of the growth factor concentrations may lead to a switch in the corresponding model parameter. Our first objective is to achieve a network representation of the switching system involving nodes and edges. Each node stands for a full-fledged nonlinear system with distributed delays where the parameters are constant. For each node, a stable positive steady state may exist. In the network framework, a change in the growth-factor concentration is interpreted as a transition from one node to another. The objective is then to determine the best switching signal steering the biological parameters over time, making the overall dynamic system moving from one operating mode to another, until reaching a desired stable state. Our method provides a (sub)optimal therapeutic strategy, guiding the density of cells from an abnormal state towards a healthy one, through multiple drug infusions. The drug sequence is deduced from the optimal switching signal provided by a classical pathfinding algorithm, associated with the network representation.Item Open Access Analysis of blood cell production under growth factors switching(Elsevier B.V., 2017) Djema, W.; Özbay, Hitay; Bonnet, C.; Fridman, E.; Mazenc, F.; Clairambault, J.Hematopoiesis is a highly complicated biological phenomenon. Improving its mathematical modeling and analysis are essential steps towards consolidating the common knowledge about mechanisms behind blood cells production. On the other hand, trying to deepen the mathematical modeling of this process has a cost and may be highly demanding in terms of mathematical analysis. In this paper, we propose to describe hematopoiesis under growth factor-dependent parameters as a switching system. Thus, we consider that different biological functions involved in hematopoiesis, including aging velocities, are controlled through multiple growth factors. Then we attempt a new approach in the framework of time-delay switching systems, in order to interpret the behavior of the system around its possible positive steady states. We start here with the study of a specific case in which switching is assumed to result from drug infusions. In a broader context, we expect that interpreting cell dynamics using switching systems leads to a good compromise between complexity of realistic models and their mathematical analysis. © 2017