Browsing by Author "Demir, Hilmi Volkan"
Now showing 1 - 20 of 501
- Results Per Page
- Sort Options
Item Open Access AC-driven, color-and brightness-tunable organic light-emitting diodes constructed from an electron only device(2013) Zhao, Y.; Chen, R.; Gao, Y.; Leck, K.S.; Yang X.; Liu, S.; Abiyasa, A.P.; Divayana, Y.; Mutlugun, E.; Tan, S.T.; Sun H.; Demir, Hilmi Volkan; Sun X.W.In this paper, a color- and brightness-tunable organic light-emitting diode (OLED) is reported. This OLED was realized by inserting a charge generation layer into an electron only device to form an n-i-p-i-n structure. It is shown that, by changing the polarity of applied voltage, only the p-i-n junction operated under positive bias can emit light and, by applying an AC voltage, emission from both junctions was realized. It is also shown that, by using a combination of blue- and red-emiting layers in two p-i-n junctions, both the color and brightness of the resulting white OLED can be tuned independently by changing the positive and negative amplitudes of the AC voltage. © 2013 Elsevier B.V. All rights reserved.Item Open Access Active Nanophotonics(IEEE, 2020) Alu, A.; Demir, Hilmi Volkan; Jagadish, cBeing able to manipulate and control light flows at small scales holds the promise to open groundbreaking opportunities for a variety of technologies. Consider, for instance, the challenges currently faced in the world of computing: as data rates and processing demands increase worldwide at an exponential rate, we are facing unsustainable increases in energy consumption associated with data centers and streaming providers. To address these challenges, optical computing and communications offer an interesting alternative to electronic-based systems. Using light for these purposes, however, is hindered by the fact that photons are not easily squeezed to volumes beyond the diffraction limit, i.e., below the wavelength scale, which would be required both to enable lowenergy computation at sufficiently high speeds and to match the degree of integration density available in electronic systems. Today, the field of optoelectronics, which combines highdensity electronic devices to process the data and low-energy data transport enabled by light, is growing at a very fast pace.Item Open Access Advances in the LED Materials and Architectures fro Energy-Saving Solid State Lighting towards Lighting Revolution(IEEE, 2012) Tan S.T.; Sun, X. W.; Demir, Hilmi Volkan; DenBaars, S. P.In this paper, we review the recent developments (in years 2010–2011) of energysaving solid-state lighting. The industry of white light-emitting diodes (LEDs) has made significant progress, and today, white LED market is increasing (mostly with increasing LED screen and LED TV sales). The so-called Blighting revolution[ has not yet really happened on a wide scale because of the lighting efficiency at a given ownership cost. Nevertheless, the rapid development of the white LEDs is expected to soon trigger and expand the revolution.Item Open Access Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer(American Chemical Society, 2014-03-21) Ju, Z. G.; Liu W.; Zhang Z.-H.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang, X. L.; Lu, S. P.; Zhang, Y. P.; Zhu B.; Hasanov N.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron blocking layer (QWEBL) are designed and grown by a metal− organic chemical-vapor deposition (MOCVD) system. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer, not only leads to an improved hole injection but also reduces the electron leakage, thus enhancing the radiative recombination rates across the active region. Consequently, the light output power was enhanced by 10% for the QWEBL LED at a current density of 35 A/cm2. The efficiency droop of the optimized device was reduced to 16%. This is much smaller than that of the conventional p-AlGaN electron blocking layer LED, which is 31%.Item Open Access Ag@SiO2-embedded InGaN/GaN nanorod array white light-emitting diode with perovskite nanocrystal films(Elsevier, 2021-10-28) Shin, Do-Y.; Kim, T.; Akyüz, Özgün; Demir, Hilmi Volkan; Lee, In-H.White light-emitting diodes (LEDs) are great candidates for general lighting. Phosphors have commonly been used for the color conversion layers of white LEDs; however, they backscatter more than half of the down-converted light, which is lost within the device, thus degrading the overall performance. In this study, we propose and demonstrate white LEDs with improved efficiency enabled by the intimate integration of Ag@SiO2-supported blue InGaN/GaN nanorod LEDs together with green- and red-emitting perovskite nanocrystal (PNC) films as color conversion layers. The photoluminescence (PL) intensity of the blue LEDs (BLEDs) was significantly enhanced owing to the localized surface plasmon (LSP) effect of Ag@SiO2 nanoparticles. In addition, the perovskite PL intensity was improved by the high-power BLED backlight. The resulting PL intensity of the Ag@SiO2 nanoparticle-embedded nanorod white LED was 62% greater than that of a planar white LED.Item Open Access All-colloidal parity–time-symmetric microfiber lasers balanced between the gain of colloidal quantum wells and the loss of colloidal metal nanoparticles(Royal Society of Chemistry, 2022-08-23) Foroutan-Barenji, Sina; Shabani, Farzan; Işık, Ahmet Tarik; Dikmen, Zeynep; Demir, Hilmi VolkanLasers based on semiconductor colloidal quantum wells (CQWs) have attracted wide attention, thanks to their facile solution-processability, low threshold and wide range spectral tunability. Colloidal microlasers based on whispering-gallery-mode (WGM) resonators have already been widely demonstrated. However, due to their microscale size typically supporting multiple modes, they suffer from multimode competition and higher threshold. The ability to control the multiplicity of modes oscillating within colloidal laser resonators and achieving single-mode lasers is of fundamental importance in many photonic applications. Here we show that as a unique, simple and versatile architecture of all-colloidal lasers intrinsically enabled by balanced gain/loss segments, the lasing threshold reduction and spectral purification can be readily achieved in a system of a WGM-supported microfiber cavity by harnessing the notions of parity–time symmetry (PT). In particular, we demonstrate a proof-of-concept PT-symmetric microfiber laser employing CQWs as the colloidal gain medium along with a carefully tuned nanocomposite of Ag nanoparticles (Ag NPs) incorporated into a PMMA matrix altogether and conveniently coated around a coreless microfiber as a rigorously tailored colloidal loss medium to balance the gain. The realization of gain/loss segments in our PT-symmetric all-colloidal arrangement is independent of selected pumping, reducing the complexity of the system and making compact device applications feasible, where control over the pumping is not possible. We observed a reduction in the number of modes, resulting in a reduced threshold and enhanced output power of the PT-symmetric laser. The PT-symmetric CQW-WGM microcavity architecture offers new opportunities towards simple implementation of high-performance optical resonators for colloidal lasers.Item Open Access All-optical control of exciton flow in a colloidal quantum well complex(Springer Nature, 2020) Yu, J.; Sharma, Manoj; Sharma, A.; Delikanlı, Savaş; Demir, Hilmi Volkan; Dang, C.Excitonics, an alternative to romising for processing information since semiconductor electronics is rapidly approaching the end of Moore’s law. Currently, the development of excitonic devices, where exciton flow is controlled, is mainly focused on electric-field modulation or exciton polaritons in high-Q cavities. Here, we show an all-optical strategy to manipulate the exciton flow in a binary colloidal quantum well complex through mediation of the Förster resonance energy transfer (FRET) by stimulated emission. In the spontaneous emission regime, FRET naturally occurs between a donor and an acceptor. In contrast, upon stronger excitation, the ultrafast consumption of excitons by stimulated emission effectively engineers the excitonic flow from the donors to the acceptors. Specifically, the acceptors’ stimulated emission significantly accelerates the exciton flow, while the donors’ stimulated emission almost stops this process. On this basis, a FRET-coupled rate equation model is derived to understand the controllable exciton flow using the density of the excited donors and the unexcited acceptors. The results will provide an effective all-optical route for realizing excitonic devices under room temperature operation.Item Open Access All-surface induction heating with high efficiency and space invariance enabled by arraying squircle coils in square lattice(Institute of Electrical and Electronics Engineers, 2018) Kılıç, Veli Tayfun; Ünal, Emre; Yilmaz, N.; Demir, Hilmi VolkanThis paper reports an all-surface induction heating system that enables efficient heating at a constant speed all over the surface independent of the specific location on the surface. In the proposed induction system, squircle coils are placed tangentially in a two-dimensional square lattice as opposed to commonly used hexagonal packing. As a proof-of-concept demonstration, a simple model setup was constructed using a 3 × 3 coil array along with a steel plate to be inductively heated. To model surface heating, a set of six locations for the plate was designated considering symmetry points. For all of these cases, power dissipated by the system and the plate's transient heating were recorded. Independent from the specific plate position, almost equal heating speeds were measured for the similar levels of dissipated energies in the system. Using full three-dimensional electromagnetic solutions, the experimental results were also verified. The findings indicate that the proposed system is proved to enable energy efficient space-invariant heating in all-surface induction hobs.Item Open Access Alloyed heterostructures of CdSexS1-x nanoplatelets with highly tunable optical gain performance(American Chemical Society, 2017) Kelestemur Y.; Dede, D.; Gungor K.; Usanmaz, C. F.; Erdem, O.; Demir, Hilmi VolkanHere, we designed and synthesized alloyed heterostructures of CdSexS1-x nanoplatelets (NPLs) using CdS coating in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSexS1-x core NPLs as a seed, we prepared CdSexS1-x/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSexS1-x cores, we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together with increased absorption cross-section and improved stability without changing the emission spectrum of CdSexS1-x alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSexS1-x/CdS core/shell NPLs. Depending on the sulfur composition of the CdSexS1-x core and thickness of the CdS shell, CdSexS1-x/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560-650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSexS1-x alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSexS1-x based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to ∼53 μJ/cm2.Item Open Access Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets(American Chemical Society, 2014-07) Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, Hilmi VolkanColloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/CdS core/crown NPLs having different CdS crown size with one- and two-photon absorption pumping. The core/crown NPLs exhibit enhanced gain performance as compared to the core-only NPLs due to increased absorption cross section and the efficient interexciton funneling, which is from the CdS crown to the CdSe core. One- and two-photon absorption pumped amplified spontaneous emission thresholds are found as low as 41 μJ/cm2 and 4.48 mJ/cm2 , respectively. These thresholds surpass the best reported optical gain performance of the state-of-the-art colloidal nanocrystals (i.e., quantum dots, nanorods,etc.) emitting in the same spectral range as the NPLs. Moreover, gain coefficient of the NPLs is measured as high as 650 cm 1 , which is 4-fold larger than the best reported gain coefficient of the colloidal quantum dots. Finally, we demonstrate a two-photon absorption pumped vertical cavity surface emitting laser of the NPLs with a lasing threshold as low as 2.49 mJ/cm2 . These excellent results are attributed to the superior properties of the NPLs as optical gain media.Item Open Access Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots(American Chemical Society, 2011-01-19) Ozel, T.; Nizamoglu, S.; Sefunc, M.A.; Samarskaya, O.; Ozel, I. O.; Mutlugun, E.; Lesnyak, V.; Gaponik N.; Eychmuller, A.; Gaponenko, S. V.; Demir, Hilmi VolkanWe propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics.Item Open Access Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods(IEEE, 2014-10) Gao, Y.; Ta, V. D.; Zhao, X.; Wang, Y.; Chen, R.; Zhao, Y.; Dang, C.; Sun, X.; Sun, H.; Demir, Hilmi VolkanAnisotropic optical properties of CdSe/CdS dot-in-rods loaded in a capillary tube are demonstrated, suggesting nanorods' alignment with a microfluidic approach. Polarized emissions from photoluminescence and whispering gallery mode lasing show promising applications for lighting and displays. © 2014 IEEE.Item Open Access Anomalous spectral characteristics of ultrathin sub-nm colloidal CdSe nanoplatelets(Optical Society of America, 2017) Bose S.; Delikanlı, Savaş; Yeltik, Aydan; Sharma, Manoj; Erdem, Onur; Dang C.; Fan W.; Zhang D.H.; Demir, Hilmi VolkanWe demonstrate high quantum yield broad photoluminescence emission of ultrathin sub-nanometer CdSe nanoplatelets (two-monolayer). They also exhibit polarization-characterized lateral size dependent anomalous heavy hole and light/split-off hole absorption intensities. © 2017 IEEE.Item Open Access Applying förster-type nonradiative energy transfer formalism to nanostructures with various directionalities : dipole electric potential of exciton and dielectric environment(Springer Verlag, 2017) Hernández Martínez, P. L.; Govorov, A.; Demir, Hilmi Volkan[No abstract available]Item Open Access Aqueous colloidal nanoplatelets for imaging and improved ALA-based photodynamic therapy of prostate cancer cells(Royal Society of Chemistry, 2023-07-10) Onbaşlı, K.; Demirci, G.; Işık, Furkan; Durmuşoğlu, Emek G.; Demir, Hilmi Volkan; Acar, Havva Y.Item Open Access Assembly kinetics of nanocrystals via peptide hybridization(American Chemical Society, 2011-03-16) Seker U.O.S.; Zengin, G.; Tamerler, C.; Sarikaya, M.; Demir, Hilmi VolkanThe assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in three different cases: first, QD adsorption with no functionalization of substrate or QD surface; second, QD adsorption on QBP1-modified surface; and, finally, adsorption of QBP1-functionalized QD on silica surface. The surface modification of QDs with QBP1 enabled 79.3-fold enhancement in QD binding affinity, while modification of a silica surface with QBP1 led to only 3.3-fold enhancement. The fluorescence microscopy images also supported a coherent assembly with correspondingly increased binding affinity. Decoration of QDs with inorganic peptides was shown to increase the amount of surface bound QDs dramatically compared to the conventional methods. These results offer new opportunities for the assembly of QDs on solid surfaces for future device applications.Item Open Access Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue-to red-shifting (and non-shifting) amplified spontaneous emission(American Chemical Society, 2013-11-21) Cihan, A. F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum, U.; Yaglioglu, H. G.; Elmali, A.; Demir, Hilmi VolkanTunable, high-performance, two-photon absorption (TPA)-based amplified spontaneous emission (ASE) from near-unity quantum efficiency colloidal quantum dots (CQDs) is reported. Besides the absolute spectral tuning of ASE, the relative spectral tuning of ASE peak with respect to spontaneous emission was shown through engineering excitonic interactions in quasi-type-II CdSe/CdS core/shell CQDs. With core shell size adjustments, it was revealed that Coulombic exciton-exciton interactions can be tuned to be attractive (type-I-like) or repulsive (type-II-like) leading to red- or blue-shifted ASE peak, respectively, and that nonshifting ASE can be achieved with the right core shell combinations. The possibility of obtaining ASE at a specific wavelength from both type-I-like and type-II-like CQDs was also demonstrated. The experimental observations were supported by parametric quantum-mechanical modeling, shedding light on the type-tunability. These excitonically engineered CQD-solids exhibited TPA-based ASE threshold as low as 6.5 mJ/cm(2) under 800 nm excitation, displaying one of the highest values of TPA cross-section of 44 660 GM.Item Open Access Au-silica core/shell hybrid nanoparticles furnished with CdTe nanocrystals for enhanced plasmon-exciton interactions(IEEE, 2010) Öze, İlkem Özge; Özel, Tuncay; Tuncel, Donus; Demir, Hilmi VolkanTo date extensive research efforts have confirmed that optical properties of bulk semiconductors and metals are substantially modified when they are transformed into nano-dimensions. For example, metal nanoparticles with dimensions less than hundred nanometers strongly oscillate at a specific resonance frequency to generate localized surface plasmons depending on their size. This creates strongly localized electric fields in the close proximity of the metal nanoparticles under external excitation. Similarly, because of the size effect, semiconductor quantum dot nanocrystals (NCs), with dimensions less than 10 nanometers, feature highly tunable absorption and emission characteristics. High levels of brightness and photostability, and broad excitation range with sharp emission spectra make these NCs ideal candidates as active materials in light emitting diodes and solar cells, and as fluorescent labels in bioimaging. This paper presents the synthesis and characterization of a new set of CdTe NC decorated, Au-silica core/shell hybrid nanoparticles with silica shell thicknesses controlled and tuned by synthesis.This paper demonstrates that Au-silica core/shell nanoparticles can successfully assemble CdTe nanocrystals right on their silica shells for enhanced plasmon-exciton interactions, while avoiding the problems of lacking control in spacing and limited film thickness.Item Open Access Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating(American Chemical Society, 2016) Gao, Y.; Tobing, L. Y. M.; Kiffer, A.; Zhang, D. H.; Dang C.; Demir, Hilmi VolkanSince optical gain was observed from colloidal quantum dots (CQDs), research on CQD lasing has been focused on the CQDs themselves as gain materials and their coupling with optical resonators. Combining the advantages of a CQD gain medium and optical microcavity in a laser device is desirable. Here, we show concentric circular Bragg gratings intimately incorporating CdSe/CdZnS/ZnS gradient shell CQDs. Because of the strong circularly symmetric optical confinement in two dimensions, the output beam CQD-based circular grating distributed feedback laser is found to be highly spatially coherent and azimuthally polarized with a donut-like cross section. We also observe the strong modification of the photoluminescence spectrum by the grating structures, which is associated with modification of optical density of states. This effect confirmed the high quality of the resonator that we fabricated and the spectral overlap between the optical transitions of the emitter and resonance of the cavity. Single mode lasing has been achieved under a quasi-continuous pumping regime, while the position of the lasing mode can be conveniently tuned via adjusting the thickness of the CQD layer. Moreover, a unidirectional output beam can be observed as a bright circular spot on a screen without any collimation optics, presenting a direct proof of its high spatial coherence.Item Open Access Bifunctional highly fluorescent hollow porous microspheres made of BaMoO4: Pr3+ nanocrystals via a template-free synthesis(The Royal Society of Chemistry, 2011) Yang, X.; Zhou, Y.; Yu, X.; Demir, Hilmi Volkan; Sun, X. W.We report a bifunctional hollow porous microsphere composed of single-component BaMoO4 : Pr3+ nanocrystals by a facile template-free synthesis. All the as-synthesized hollow microspheres are well-dispersed with a diameter of 2-4 mu m and the BaMoO4 : Pr3+ nanocrystals measure 30-60 nm in diameter. It is observed that there are a large amount of pores with an average diameter is 17.5 nm in the shell of these BaMoO4 : Pr3+ hollow microspheres, thereby exhibiting a great promise for drug delivery. Meanwhile, the strong, narrow-bandwidth red emission centered at 643 nm from these nanostructures can be efficiently excited from 430 nm to 500 nm. The combination of excellent luminescent properties and a hollow porous nanostructure suggest a great promise in the application of these nanostructures in lighting and displays, and in biomedicine such as targeted drug delivery, integrated imaging, diagnosis, and therapeutics. In addition, the template-free solution synthesis can be applied to the design and fabrication of other functional architectures.