BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Correa-Duarte, M. A."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical response of Ag-Au bimetallic nanoparticles to electron storage in aqueous medium
    (2008) Tunc, I.; Guvenc, H. O.; Sezen, H.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.
    Composition and structure dependence of the shift in the position of the surface plasmon resonance band upon introduction of NaBH 4 to aqueous solutions of gold and silver nanoparticles are presented. Silver and gold nanoalloys in different compositions were prepared by co-reduction of the corresponding salt mixtures using sodium citrate as the reducing agent. After addition of NaBH 4 to the resultant nanoalloys, the maximum of their surface plasmon resonance band, ranging between that of pure silver (ca. 400 nm) and of pure gold (ca. 530 nm), is blue-shifted as a result of electron storage on the particles. The extent of this blue shift increases non-linearly with the mole fraction of silver in the nanoparticle, parallel to the trends reported previously for both the frequency and the extinction coefficient of the plasmon band shifts. Gold(core)@silver(shell) nanoparticles were prepared by sequential reduction of gold and silver, where addition of NaBH 4 results in relatively large spectral shift in the plasmon resonance band when compared with the nanoalloys having a similar overall composition. The origin of the large plasmon band shift in the core-shell is related with a higher silver surface concentration on these particles. Hence, the chemical nature of the nanoparticle emerges as the dominating factor contributing to the extent of the spectral shift as a result of electron storage in bimetallic systems. Copyright © 2008 American Scientific Publishers All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    XPS characterization of Au (core)/SiO2 (shell) nanoparticles
    (American Chemical Society, 2005) Tunc, I.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.
    Core-shell nanoparticles with ca. 15-nm gold core and 6-nm silica shell were prepared and characterized by XPS. The Au/Si atomic ratio determined by XPS is independent of the electron takeoff angle because of the concentric spherical shape of the nanoparticles. The formula given by Wertheim and DiCenzo (Phys. Rev. B 1988, 37, 844) for spherical nanoparticles and the modified one by Yang et al. (J. Appl. Phys. 2005, 97, 024303) for core-shell nanoparticles are used to correlate the XPS-derived composition with the geometry of the nanoparticles only after significantly modifying either the bulk density of the silica shell or the attenuation length of the photoelectrons. © 2005 American Chemical Society.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback