BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ciftci Dede, Eda"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes
    (American Physiological Society, 2021-11-09) Kara Eroğlu, Fehime; Yazar, Volkan; Guler, Ulku; Yıldırım, Muzaffer; Yıldırım, Tuğçe; Gungor, Tulin; Celikkaya, Evra; Karakaya, Deniz; Turay, Nilsu; Ciftci Dede, Eda; Korkusuz, Petek; Salih, Bekir; Bulbul, Mehmet; Gürsel, İhsan
    Since previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback