Browsing by Author "Choi, J."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Disgust sensitivity relates to attitudes toward gay men and lesbian women across 31 nations(Sage Publications Ltd., 2021-11-26) Van Leeuwen, F.; Inbar, Y.; Petersen, M. B.; Aarøe, L.; Barclay, P.; Barlow, F. K.; de Barra, M.; Becker, D. V.; Borovoi, L.; Choi, J.; Consedine, N. S.; Conway, J. R.; Conway, P.; Adoric, V. C.; Demirci, Dilara Ekin; Fernández, A. M.; Ferreira, D. C. S.; Ishii, K.; Jakšić, I.; Ji, T.; Jonaityte, I.; Lewis, D. M. G.; Li, N. P.; McIntyre, J. C.; Mukherjee, S.; Park, J. H.; Pawlowski, B.; Pizarro, D.; Prokop, P.; Prodromitis, G.; Rantala, M. J.; Reynolds, L. M.; Sandin, B.; Sevi, Barış; Srinivasan, N.; Tewari, S.; Yong, J. C.; Žeželj, I.; Tybur, J. M.Previous work has reported a relation between pathogen-avoidance motivations and prejudice toward various social groups, including gay men and lesbian women. It is currently unknown whether this association is present across cultures, or specific to North America. Analyses of survey data from adult heterosexuals (N = 11,200) from 31 countries showed a small relation between pathogen disgust sensitivity (an individual-difference measure of pathogen-avoidance motivations) and measures of antigay attitudes. Analyses also showed that pathogen disgust sensitivity relates not only to antipathy toward gay men and lesbians, but also to negativity toward other groups, in particular those associated with violations of traditional sexual norms (e.g., prostitutes). These results suggest that the association between pathogen-avoidance motivations and antigay attitudes is relatively stable across cultures and is a manifestation of a more general relation between pathogen-avoidance motivations and prejudice towards groups associated with sexual norm violations.Item Open Access The genetic structure of the Turkish population reveals high levels of variation and admixture(National Academy of Sciences, 2020-12-18) Kars, Meltem Ece; Başak, A. N.; Onat, Onur Emre; Bilguvar, K.; Choi, J.; Itan, Y.; Çağlar, C.; Palvadeau, R.; Casanova, J.-L.; Cooper, D. N.; Stenson, P. D.; Yavuz, A.; Buluş, H.; Günel, M.; Friedman, J. M.; Özçelik, TayfunThe construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 30% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.Item Open Access Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex(Elsevier, 2020-04) Werling, D. M.; Pochareddy, S.; Choi, J.; An, J.-Y.; Sheppard, B.; Peng, M.; Li, Z.; Dastmalchi, C.; Santpere, G.; Sousa, A. M. M.; Tebbenkamp, A. T. N.; Kaur, N.; Gulden, F. O.; Breen, M. S.; Liang, L.; Gilson, M. C.; Zhao, X.; Dong, S.; Klei, L.; Çiçek, A. Ercüment; Buxbaum, J. D.; Adle-Biassette, H.; Thomas, J.-L.; Aldinger, K. A.; O’Day, D. R.; Glass, I. A.; Zaitlen, N. A.; Talkowski, M. E.; Roeder, K.; State, M. W.; Devlin, B.; Sanders, S. J.; Sestan, N.Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both “constant” and “temporal-predominant” eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology.