Browsing by Author "Cali, D. S."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Accelerating genome analysis: a primer on an ongoing journey(IEEE, 2020) Alser, M.; Zülal, Bingöl; Cali, D. S.; Kim, J.; Ghose, S.; Alkan, Can; Mutlu, OnurGenome analysis fundamentally starts with a process known as read mapping, where sequenced fragments of an organism's genome are compared against a reference genome. Read mapping is currently a major bottleneck in the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are able to sequence a genome much faster than the computational techniques employed to analyze the genome. We describe the ongoing journey in significantly improving the performance of read mapping. We explain state-of-the-art algorithmic methods and hardware-based acceleration approaches. Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various execution paradigms (e.g., processing inside or near memory). We conclude with the challenges of adopting these hardware-accelerated read mappers.Item Open Access BLEND: A fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis(Oxford University Press, 2023-01-10) Firtina, C.; Park, J.; Alser, M.; Kim, J. S.; Cali, D. S.; Shahroodi, T.; Ghiasi, N. M.; Singh, G.; Kanellopoulos, K.; Alkan, Can; Mutlu, O.Generating the hash values of short subsequences, called seeds, enables quickly identifying similarities between genomic sequences by matching seeds with a single lookup of their hash values. However, these hash values can be used only for finding exact-matching seeds as the conventional hashing methods assign distinct hash values for different seeds, including highly similar seeds. Finding only exact-matching seeds causes either (i) increasing the use of the costly sequence alignment or (ii) limited sensitivity. We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seed matches. BLEND (i) utilizes a technique called SimHash, that can generate the same hash value for similar sets, and (ii) provides the proper mechanisms for using seeds as sets with the SimHash technique to find fuzzy seed matches efficiently. We show the benefits of BLEND when used in read overlapping and read mapping. For read overlapping, BLEND is faster by 2.4×-83.9× (on average 19.3×), has a lower memory footprint by 0.9×-14.1× (on average 3.8×), and finds higher quality overlaps leading to accurate de novo assemblies than the state-of-the-art tool, minimap2. For read mapping, BLEND is faster by 0.8×-4.1× (on average 1.7×) than minimap2. Source code is available at https://github.com/CMU-SAFARI/BLEND. © 2023 The Author(s). Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.Item Open Access FastRemap: a tool for quickly remapping reads between genome assemblies(Oxford University Press, 2022-08-17) Kim, J. S.; Firtina, C.; Cavlak, M. B.; Cali, D. S.; Alkan, Can; Mutlu, OnurMotivation: A genome read dataset can be quickly and efficiently remapped from one reference to another similar reference (e.g., between two reference versions or two similar species) using a variety of tools, e.g., the commonly used CrossMap tool. With the explosion of available genomic datasets and references, high-performance remapping tools will be even more important for keeping up with the computational demands of genome assembly and analysis. Results: We provide FastRemap, a fast and efficient tool for remapping reads between genome assemblies. FastRemap provides up to a 7.82 speedup (6.47, on average) and uses as low as 61.7% (80.7%, on average) of the peak memory consumption compared to the state-of-the-art remapping tool, CrossMap.Item Open Access GRIM-Filter: fast seed location filtering in DNA read mapping using processing-in-memory technologies(BioMed Central, 2018) Kim, J. S.; Cali, D. S.; Xin, H.; Lee, D.; Ghose, S.; Alser, M.; Hassan, H.; Ergin, O.; Alkan C.; Mutlu, O.Background: Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. Results: We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. Conclusion: GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.Item Open Access Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions(Oxford University Press, 2018-04) Cali, D. S.; Kim, J. S.; Ghose, S.; Alkan, Can; Mutlu, O.Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, to overcome the high error rates of the nanopore sequencing technology.