Browsing by Author "Cakmak, A.O."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Multichannel optical diode with unidirectional diffraction relevant total transmission(Optical Society of American (OSA), 2012) Serebryannikov, A.E.; Cakmak, A.O.; Özbay, EkmelWe will show that broadband unidirectional optical transmission with a total transmission maximum inside the band can be obtained for linearly polarized incident waves in the nonsymmetric photonic crystal gratings made of isotropic linear materials at a fixed nonzero or zero angle of incidence. Being based on the merging of diffraction and dispersion effects, the basic physical mechanism studied exploits the transmission channels associated with higher orders, for which asymmetry in the coupling conditions at the two grating interfaces appears when spatial inversion symmetry is broken. Total transmission in one direction and zero transmission in the opposite direction can be obtained due to hybridization of Fabry-Perot type resonances with a diffraction anomaly that yields a diode-like operation regime. Single-beam deflection and two-beam splitting can be obtained, for which transmission can be (nearly) total, if the corrugated side is illuminated. In contrast to the previous studies, it is also shown that unidirectional transmission can appear only at a fixed frequency and only due to diffractions, when total transmission occurs at the noncorrugated-side illumination, being in agreement with the Lorentz Lemma. © 2012 Optical Society of America.Item Open Access Spatial filters based on EBG structures with anisotropic-like dispersion(IEEE, 2010) Serebryannikov, A.E.; Cakmak, A.O.; Çolak, Evrim; Özbay, EkmelBandpass and bandstop spatial filters based on the dielectric-rod EBG structures are proposed and validated for the frequency range from 18 to 25 GHz. The obtained experimental results are well consistent with the theoretical predictions. The exploited mechanism utilizes, in particular, anisotropic-like dispersion, which can occur in the conventional EBG structures made of isotropic materials.Item Open Access Transmission enhancement through deep subwavelength apertures using connected split ring resonators(Optical Society of American (OSA), 2010) Ates, D.; Cakmak, A.O.; Colak, E.; Zhao, R.; Soukoulis, C.M.; Özbay, EkmelWe report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of λ/31xλ/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. © 2010 Optical Society of America.Item Open Access Unidirectional transmission in photonic-crystal gratings at beam-type illumination(Optical Society of American (OSA), 2010) Cakmak, A.O.; Colak, E.; Serebryannikov, A.E.; Özbay, EkmelUnidirectional transmission is studied theoretically and experimentally for the gratings with one-side corrugations (non-symmetric gratings), which are based on two-dimensional photonic crystals composed of alumina rods. The unidirectional transmission appears at a fixed angle of incidence as a combined effect of the peculiar dispersion features of the photonic crystal and the properly designed corrugations. It is shown that the basic unidirectional transmission characteristics, which are observed at a plane-wave illumination, are preserved at Gaussian-beam and horn antenna illuminations. The main attention is paid to the single-beam unidirectional regime, which is associated with the strong directional selectivity arising due to the first negative diffraction order. An additional degree of freedom for controlling the transmission of the electromagnetic waves is obtained by making use of the asymmetric corrugations at the photonic crystal interface. © 2010 Optical Society of America.Item Open Access Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas(Optical Society of American (OSA), 2014) Cakmakyapan, S.; Cinel, N.A.; Cakmak, A.O.; Özbay, EkmelWe introduced fractal geometry to the conventional bowtie antennas. We experimentally and numerically showed that the resonance of the bowtie antennas goes to longer wavelengths, after each fractalization step, which is considered a tool to miniaturize the main bowtie structure. We also showed that the fractal geometry provides multiple hot spots on the surface, and it can be used as an efficient SERS substrate. © 2014 Optical Society of America.