BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bose, S."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets
    (Royal Society of Chemistry, 2017) Bose, S.; Shendre, S.; Song, Z.; Sharma, V. K.; Zhang, D. H.; Dang C.; Fan, W.; Demir, Hilmi Volkan
    Colloidal cadmium selenide (CdSe) nanoplatelets (NPLs) are a recently developed class of efficient luminescent nanomaterials suitable for optoelectronic device applications. A change in temperature greatly affects their electronic bandstructure and luminescence properties. It is important to understand how and why the characteristics of NPLs are influenced, particularly at elevated temperatures, where both reversible and irreversible quenching processes come into the picture. Here we present a study of the effect of elevated temperatures on the characteristics of colloidal CdSe NPLs. We used an effective-mass envelope function theory based 8-band k·p model and density-matrix theory considering exciton-phonon interaction. We observed the photoluminescence (PL) spectra at various temperatures for their photon emission energy, PL linewidth and intensity by considering the exciton-phonon interaction with both acoustic and optical phonons using Bose-Einstein statistical factors. With a rise in temperature we observed a fall in the transition energy (emission redshift), matrix element, Fermi factor and quasi Fermi separation, with a reduction in intraband state gaps and increased interband coupling. Also, there was a fall in the PL intensity, along with spectral broadening due to an intraband scattering effect. The predicted transition energy values and simulated PL spectra at varying temperatures exhibit appreciable consistency with the experimental results. Our findings have important implications for the application of NPLs in optoelectronic devices, such as NPL lasers and LEDs, operating much above room temperature.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ultrathin highly luminescent two-monolayer colloidal CdSe nanoplatelets
    (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Delikanlı, Savaş; Yu, G.; Yeltik, Aydan; Bose, S.; Erdem, Talha; Yu, J.; Erdem, Onur; Sharma, Manoj; Sharma, Vijay Kumar; Quliyeva, Ulviyya; Shendre, S.; Dang, C.; Zhang, D.; Sum, T.; Fan, W.; Demir, Hilmi Volkan
    Surface effects in atomically flat colloidal CdSe nanoplatelets (NLPs) are significantly and increasingly important with their thickness being reduced to subnanometer level, generating strong surface related deep trap photoluminescence emission alongside the bandedge emission. Herein, colloidal synthesis of highly luminescent two‐monolayer (2ML) CdSe NPLs and a systematic investigation of carrier dynamics in these NPLs exhibiting broad photoluminescence emission covering the visible region with quantum yields reaching 90% in solution and 85% in a polymer matrix is shown. The astonishingly efficient Stokes‐shifted broadband photoluminescence (PL) emission with a lifetime of ≈100 ns and the extremely short PL lifetime of around 0.16 ns at the bandedge signify the participation of radiative midgap surface centers in the recombination process associated with the underpassivated Se sites. Also, a proof‐of‐concept hybrid LED employing 2ML CdSe NPLs is developed as color converters, which exhibits luminous efficacy reaching 300 lm Wopt−1. The intrinsic absorption of the 2ML CdSe NPLs (≈2.15 × 106 cm−1) reported in this study is significantly larger than that of CdSe quantum dots (≈2.8 × 105 cm−1) at their first exciton signifying the presence of giant oscillator strength and hence making them favorable candidates for next‐generation light‐emitting and light‐harvesting applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback