Browsing by Author "Bayrak, T."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Effect of O2/Ar flow ratio and post-deposition annealing on the structural, optical and electrical characteristics of SrTiO3 thin films deposited by RF sputtering at room temperature(Elsevier, 2015) Goldenberg, E.; Bayrak, T.; Ozgit Akgun, C.; Haider A.; Leghari, S.A.; Kumar, M.; Bıyıklı, NecmiSrTiO3 (STO) thin films have been prepared by reactive RF magnetron sputtering on Si (100) and UV fused silica substrates at room temperature. The effect of oxygen flow on film characteristics was investigated at a total gas flow of 30 sccm, for various O2/O2 + Ar flow rate ratios. As-deposited films were annealed at 700 °C in oxygen atmosphere for 1 h. Post-deposition annealing improved both film crystallinity and spectral transmittance. Film microstructure, along with optical and electrical properties, was evaluated for both as-deposited and annealed films. Abroad photoluminescence emission was observed within the spectral range of 2.75–3.50 eV for all STO thin films irrespective of their deposition parameters. Upon annealing, the optical band gap of the film deposited with 0% O2 concentration slightly blue-shifted, while the other samples grown at higher oxygen partial pressure did not show any shift. Refractive indices (n) (at 550 nm) were in the range of 2.05 to 2.09, and 2.10 to 2.12 for as-deposited and annealed films, respectively. Dielectric constant values (at 100 kHz) within the range of 30–66 were obtained for film thicknesses less than 300 nm, which decreased to ~30–38 after postdeposition annealing.Item Open Access Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition(Institute of Physics Publishing, 2016) Altuntas, H.; Bayrak, T.; Kizir, S.; Haider, A.; Bıyıklı, NecmiIn this study, aluminum nitride (AlN) thin films were deposited at 200 �C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ∼5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.Item Open Access Postdeposition annealing on RF-sputtered SrTiO3 thin films(AVS Science and Technology Society, 2017) Bayrak, T.; Kizir,S.; Kahveci, E.; Bıyıklı, N.; Goldenberg, E.Understanding of structural, optical, and electrical properties of thin films are very important for a reliable device performance. In the present work, the effect of postdeposition annealing on stoichiometric SrTiO3 (STO) thin films grown by radio frequency magnetron sputtering at room temperature on p-type Si (100) and quartz substrates were studied. Highly transparent and well adhered thin films were obtained in visible and near infrared regions. As-deposited films were amorphous, while nanocrystalline and polycrystalline phases of the STO thin films formed as a function of annealing temperature. Films annealed at 300 �C showed nanocrystallinity with some amorphous phase. Crystallization started after 15 min annealing at 700 �C, and further improved for films annealed at 800 �C. However, crystallinity reduced for films which were annealed at 900 �C. The optical and electrical properties of STO thin films affected by postdeposition annealing at 800 �C: Eg values decreased from 4.50 to 4.18 eV, n(λ) values (at 550 nm) increased from 1.81 to 2.16. The surface roughness increased with the annealing temperature due to the increased crystallite size, densification and following void formation which can be seen from the scanning electron microscopy images. The highest dielectric constants (46 at 100 kHz) observed for films annealed at 800 �C; however, it was lower for 300 �C annealed (25 at 100 kHz) and as-deposited (7 at 100 kHz) STO films having ∼80 nm thickness.Item Open Access Structural, optical and electrical characteristics BaSrTiOx thin films: Effect of deposition pressure and annealing(Elsevier BV * North-Holland, 2017) Bayrak, T.; Ozgit-Akgun, C.; Goldenberg, E.Among perovskite oxide materials, BaSrTiOx (BST) has attracted great attention due to its potential applications in oxide-based electronics. However, reliability and efficiency of BST thin films strongly depend on the precise knowledge of the film microstructure, as well as optical and electrical properties. In the present work, BST films were deposited at room temperature using radio frequency magnetron sputtering technique. The impact of deposition pressure, partial oxygen flow, and post-deposition annealing treatment on film microstructure, surface morphology, refractive index, and dielectric constants were studied by X-ray diffraction, scanning electron microscopy, spectrophotometry, ellipsometry, photoluminescence, as well as capacitance-voltage measurements. Well-adhered and uniform amorphous films were obtained at room temperature. For all as-deposited films, the average optical transmission was ~ 85% in the VIS-NIR spectrum. The refractive indices of BST films were in the range of 1.90–2.07 (λ = 550 nm). Post-deposition annealing at 800 °C for 1 h resulted in polycrystalline thin films with increased refractive indices and dielectric constants, however reduced optical transmission values. Frequency dependent dielectric constants were found to be in the range of 46–72. However, the observed leakage current was relatively small, about 1 μA. The highest FOM values were obtained for films deposited at 0.67 Pa pressures, while charge storage capacity values increased with increased deposition pressure. Results show that room-temperature grown BST films have potential for device applications.