Browsing by Author "Babur, O."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Analyzing causal relationships in proteomic profiles using CausalPath(Cell Press, 2021-12-17) Luna, A.; Siper, M. C.; Korkut, A.; Durupinar, F.; Aslan, J. E.; Sander, C.; Demir, E.; Babur, O.; Doğrusöz, UğurCausalPath (causalpath.org) evaluates proteomic measurements against prior knowledge of biological pathways and infers causality between changes in measured features, such as global protein and phospho-protein levels. It uses pathway resources to determine potential causality between observable omic features, which are called prior relations. The subset of the prior relations that are supported by the proteomic profiles are reported and evaluated for statistical significance. The end result is a network model of signaling that explains the patterns observed in the experimental dataset.Item Open Access Collaborative workspaces for pathway curation(CEUR-WS, 2016-08) Durupınar-Babur, F.; Siper, Metin Can; Doğrusöz, Uğur; Bahceci, İstemi; Babur, O.; Demir, E.We present a web based visual biocuration workspace, focusing on curating detailed mechanistic pathways. It was designed as a flexible platform where multiple humans, NLP and AI agents can collaborate in real-time on a common model using an event driven API. We will use this platform for exploring disruptive technologies that can scale up biocuration such as NLP, human-computer collaboration, crowd-sourcing, alternative publishing and gamification. As a first step, we are designing a pilot to include an author-curation step into the scientific publishing, where the authors of an article create formal pathway fragments representing their discovery- heavily assisted by computer agents. We envision that this "microcuration" use-case will create an excellent opportunity to integrate multiple NLP approaches and semi-automated curation. © 2016, CEUR-WS. All rights reserved.Item Open Access Integrating biological pathways and genomic profiles with ChiBE 2(BioMed Central Ltd., 2014) Babur, O.; Dogrusoz, U.; Çakır, M.; Aksoy, B. A.; Schultz, N.; Sander, C.; Demir, E.Background: Dynamic visual exploration of detailed pathway information can help researchers digest and interpret complex mechanisms and genomic datasets.Results: ChiBE is a free, open-source software tool for visualizing, querying, and analyzing human biological pathways in BioPAX format. The recently released version 2 can search for neighborhoods, paths between molecules, and common regulators/targets of molecules, on large integrated cellular networks in the Pathway Commons database as well as in local BioPAX models. Resulting networks can be automatically laid out for visualization using a graphically rich, process-centric notation. Profiling data from the cBioPortal for Cancer Genomics and expression data from the Gene Expression Omnibus can be overlaid on these networks.Conclusions: ChiBE's new capabilities are organized around a genomics-oriented workflow and offer a unique comprehensive pathway analysis solution for genomics researchers. The software is freely available at http://code.google.com/p/chibe. © 2014 Babur et al.; licensee BioMed Central Ltd.Item Open Access PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data(Oxford University Press, 2017) Bahceci, I.; Dogrusoz, U.; La, K. C.; Babur, O.; Gao, J.; Schultz, N.While existing network visualization tools enable the exploration of cancer genomics data, most biologists prefer simplified, curated pathway diagrams, such as those featured in many manuscripts from The Cancer Genome Atlas (TCGA). These pathway diagrams typically summarize how a pathway is altered in individual cancer types, including alteration frequencies for each gene. Results: To address this need, we developed the web-based tool PathwayMapper, which runs in most common web browsers. It can be used for viewing pre-curated cancer pathways, or as a graphical editor for creating new pathways, with the ability to overlay genomic alteration data from cBioPortal. In addition, a collaborative mode is available that allows scientists to co-operate interactively on constructing pathways, with support for concurrent modifications and built-in conflict resolution. © 2017 The Author. Published by Oxford University Press. All rights reserved.