Browsing by Author "Babu, V. J."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Bi2O3 and BiOCl electrospun nanosheets and morphology-dependent photocatalytic properties(Royal Society of Chemistry, 2014) Babu, V. J.; Bhavatharini, R. S. R.; Ramakrishna, S.BiOCl and Bi2O3 nanosheet like structures were produced by electrospinning. The morphological changes were observed by changing precursor (BiOCl3 and Bi(NO3)3·5H 2O) concentrations. These nanosheets were analyzed by XRD, which reveals that the crystal structures of BiOCl and Bi2O3 belonged to tetragonal and beta-phase systems respectively. Both nanostructures were employed for the photodegradation of Alizarin Red S (ARS) dye under UV light (<390 nm) irradiation. BiOCl nanosheet like structures exhibited superior photocatalytic activity (PCA) for the degradation of ARS dye and their half-life was estimated from the kinetic plots of PCA. A plausible reaction mechanism is proposed for the PCA and discussed in detail. © the Partner Organisations 2014.Item Open Access Electrospun BiOI nano/microtectonic plate-like structure synthesis and UV-light assisted photodegradation of ARS dye(Royal Society of Chemistry, 2014) Babu, V. J.; Bhavatharini, R. S. R.; Ramakrishna, S.BiOI electrospun nanofibers were prepared by using PAN as a supporting polymer. Subsequent annealing at 500 °C for 5 h, with a ramp rate of about 5 °C min-1 in air, breaks the nanofibers down to tectonic plate-like nano/microstructures. The surface physical and chemical structural changes were then further characterized by FE-SEM, TEM, XRD and XPS. The results reveal that the morphology and crystallite size of BiOI vary strongly depending on the precursor concentration used in the synthesis method. These nanostructures were later employed for photocatalytic degradation of a synthetic textile dye, Alizarin Red S (ARS). The photocatalytic efficiencies were found to be about 93.34% after 100 min of UV-light (340 nm) illumination. Photocatalytic activity (PCA) performance depends on morphology and band alignment. All the compositions follow first order pseudo-kinetics, which was found to be 0.1197 min-1 for a doping concentration of 3%. The enhancement in photodegradation could be possibly by photocatalysis and a photosensitization phenomenon. This has been explained based on the band edge position. © the Partner Organisations 2014.Item Open Access Excitation dependent recombination studies on SnO2/TiO2 electrospun nanofibers(Royal Society of Chemistry, 2015) Babu, V. J.; Vempati S.; Ertas Y.; Uyar, TamerPoly(vinyl acetate) (PVAc)/TiO2 nanofibers, PVAc/SnO2 nanoribbons and PVAc/SnO2-TiO2 nanoribbons were produced via electrospinning. TiO2 nanofibers and SnO2 nanoribbons were obtained by removal of the polymeric matrix (PVAc) after calcination at 450 °C. Interestingly, PVAc/SnO2-TiO2 nanoribbons were transformed into SnO2-TiO2 nanofibers after calcination under the similar conditions. Fiber morphology and elemental mapping confirmed through SEM and TEM microscope techniques respectively. The X-ray diffraction measurements suggested the presence of anatase TiO2 and rutile SnO2 and both were present in the SnO2-TiO2 mixed system. Systematic photoluminescence studies were performed on the electrospun nanostructures at different excitation wavelengths (λex1 = 325, λex2 = 330, λex3 = 350, λex4 = 397 and λex5 = 540 nm). We emphasize that the defects in the SnO2-TiO2 based on the defect levels present in TiO2 and SnO2 and anticipate that these defect levels may have great potential in understanding and characterizing various semiconducting nanostructures.Item Open Access Hierarchical Electrospun Nanofibers for Energy Harvesting, Production and Environmental Remediation(Royal Society of Chemistry, 2014) Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S.As the demand for energy is rapidly growing worldwide ahead of energy supply, there is an impulse need to develop alternative energy-harvesting technologies to sustain economic growth. Due to their unique optical and electrical properties, one-dimensional (1D) electrospun nanostructured materials are attractive for the construction of active energy harvesting devices such as photovoltaics, photocatalysts, hydrogen energy generators, and fuel cells. 1D nanostructures produced from electrospinning possess high chemical reactivity, high surface area, low density, as well as improved light absorption and dye adsorption compared to their bulk counterparts. So, research has been focused on the synthesis of 1D nanostructured fibers made from metal oxides, composites, dopants and surface modification. Furthermore, fine tuning these NFs has facilitated fast charge transfer and efficient charge separation for improved light absorption in photocatalytic and photovoltaic properties. The recent trend in exploring these electrospun nanostructures has been promising in-terms of reducing costs and enhancing the efficiency compared to conventional materials. This review article presents the synthesis of 1D nanostructured fibers made via electrospinning and their applications in photovoltaics, photocatalysis, hydrogen energy harvesting and fuel cells. The current challenges and future perspectives for electrospun nanomaterials are also reviewed.Item Open Access Optoelectronic properties of layered titanate nanostructure and polyaniline impregnated devices(Wiley - V C H Verlag GmbH & Co. KGaA, 2016) Vempati S.; Ertas Y.; Babu, V. J.; Uyar, TamerIntegrated structure of titanate nanotubes and nanosheets is investigated for their optical, electronic and optoelectronic properties when combined with HCl doped polyaniline (PANI). HR-TEM, SEM and XRD were employed for detailed morphological and microstructural understanding of the orthorhombic titanate nanostructure. Chemisorbed oxygeneous groups are probed with Raman spectroscopy which are found to desorb under UV-Vis treatment. We note a blue shift of Ti-O-Ti Raman frequency in contrast to Na-O-Ti stretching. Valence band region of titanate is analyzed for contribution of O2p, O2s, Na2p and Ti3p. Photoluminescence with different excitation energies revealed the presence of oxygen vacancy related defects in titanate. The highly occupied electronic states of PANI were also analyzed until 40 eV below the Fermi energy. XPS core-level analyses revealed ∼25 % doping density in PANI. Edges of valence band and HOMO are determined to be at 2.45 eV and 2.54 eV below Fermi energy for titanate and PANI, respectively. ITO/PANI/ITO has depicted negative photoresponse and the magnitude of which is reduced ∼4 times after combining with titanate nanostructure. Essentially the nanoscale architecture separates the emeraldine base and salt regions of PANI. This separation channelizes the charge carriers before trapping which reduces the magnitude of the negative photoresponse.Item Open Access Reduced recombination and enhanced UV-assisted photocatalysis by highly anisotropic titanates from electrospun TiO2-SiO2 nanostructures(Royal Society of Chemistry, 2014) Babu, V. J.; Vempati S.; Ramakrishna, S.The surface areas of electrospun fibers/rice grain-shaped nanostructures of TiO2-SiO2 composites were further enhanced after transforming them into thorn or sponge shaped titanates via selective leaching of SiO2, which was reported by our group previously [RSC Adv., 2012, 2, 992]. In this study, we report on their application in photocatalytic activity (PCA) when juxtaposed with photoluminescence (PL). Two defect related bands are observed in PL and their origin is discussed in relation to calcination, crystallization and nucleation effects. The relative PL intensity for sponge shapes was the lowest and hence had the lowest radiative recombination, which suggests carrier trapping at defect centers. This enables the charge carriers to migrate to the surface and participate in the PCA. The results of PCA suggested that the sponge-shaped titanate exhibits the highest degradation rate among all samples. A plausible mechanism for the differences in PCA is proposed based on the variation in the defect-densities. This journal is © the Partner Organisations 2014.Item Open Access Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation(Royal Society of Chemistry, 2015) Babu, V. J.; Vempati S.; Uyar, Tamer; Ramakrishna, S.Hydrogen is an attractive alternative to fossil fuels in terms of environmental and other advantages. Of the various production methods for H2, photocatalysis requires further development so that it can be applied economically on an industrial scale. One- and two-dimensional nanostructures in both pristine and modified forms have shown great potential as catalysts in the generation of H2. We review here recent developments in these nanostructure catalysts and their efficiency in the generation of H2 under UV/visible/simulated solar light. Despite much research effort, many photocatalysts do not yet meet the practical requirements for the generation of H2, such as visible light activity. H2 production is dependent on a variety of parameters and factors. To meet future energy demands, several challenges in H2 production still need to be solved. We address here the factors that influence the efficiency of H2 production and suggest alternatives. The nanostructures are classified based on their morphology and their efficiency is considered with respect to the influencing parameters. We suggest effective ways of engineering catalyst combinations to overcome the current performance barriers.