Browsing by Author "Amini, R."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying(Elsevier Ltd, 2014) Alijani F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalIn the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti-41Ni-9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0-12. h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19') and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.Item Open Access Formation of B19′, B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics(Elsevier BV, 2014-02) Amini, R.; Alijani, F.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalNi-50Ti shape memory alloy was synthesized by mechanical alloying of the elemental powders mixture under an argon gas atmosphere. The structural and microstructural properties of the alloyed powders were evaluated by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Moreover, the Vickers microhardness of the powders was estimated at different milling times. According to the results, by milling progression, the amount of the amorphous phase increased considerably and after sufficient milling time (48h), the mechano-crystallization of the amorphous phase into the more stable crystalline phases (i.e. B2 and B19') occurred. It was found that the particles size and microhardness were significantly affected by the formation of the amorphous, B2, and B19' phases. It was also deduced that, by appropriate heating and cooling cycles, the B2 and thermally-induced B19' phases can be created. Furthermore, it was inferred that the formation of undesirable intermetallic phases (particularly NiTi2) during the heating cycle was considerably reduced by milling time evolution. © 2013 Elsevier B.V.Item Open Access Investigation of grain refinement in Al/Al2O3/B 4C nano-composite produced by ARB(2014) Akbari Beni H.; Alizadeh, M.; Ghaffari, M.; Amini, R.In this study, Al/Al2O3/B4C nano-composites were fabricated via the accumulative roll bonding (ARB) process. The grain refinement of the Al/Al2O3/B4C nano-composite strips during the ARB process was studied. Microstructural characterizations of the fabricated composites after 2, 5, and 9 cycles were performed by transmission electron microscopy (TEM). The results showed that the composite sample, after 9 cycles, was filled with homogenously distributed ultra fine grains with an average grain size of 230 nm. The findings also revealed that the increase in the dislocation density due to the presence of the nano-sized particles resulted in the grain refinement of the specimens. It was also found that the grain refinement is accelerated by the presence of the refinement particles. © 2013 Elsevier Inc. All rights reserved.Item Open Access Microstructural characterization of medical-grade stainless steel powders prepared by mechanical alloying and subsequent annealing(Elsevier, 2013) Salahinejad, E.; Hadianfard, M. J.; Ghaffari, M.; Amini, R.; Mashhadi, S. B.; Okyay, Ali KemalThe harmful effect of nickel ions released from conventional stainless steel implants has provided a high level of motivation for the further development of nickel-free stainless steels. In this paper, the microstructure of medical-grade nickel-free stainless steel powders, with the chemical composition of ASTM F2581, is studied during mechanical alloying and subsequent annealing. Rietveld X-ray diffraction and transmission electron microscopy evaluations reflect nanocrystallization, austenitization and amorphization of the powders due to mechanical activation. It is also realized that annealing of the as-milled powder can develop a single austenitic structure with nanometric crystallite sizes, implying a considerable inherent resistance to grain growth. This study demonstrates the merit of mechanical alloying and subsequent annealing in the development of nanostructured medical-grade stainless steels.Item Open Access Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys(Elsevier, 2013) Amini, R.; Shamsipoor, A.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalMechano-synthesis of Fe-32Mn-6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe-Mn-Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development.Item Open Access Properties of high specific strength Al-4wt.% Al2O3/B4C nano-composite produced by accumulative roll bonding process(Elsevier Ltd, 2013) Alizadeh, M.; beni H.A.; Ghaffari, M.; Amini, R.The influence of nano-scale reinforcement on the mechanical and microstructural properties of ultrafine-grained composites was studied. Al matrix (pure aluminum) composites, with a grain size of 230nm and B4C and Al2O3 reinforcements with an average size of 50nm, were fabricated via the accumulative roll bonding (ARB) process. To evaluate structure and microstructure of the produced composites, X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were applied. Mechanical properties of the specimens were investigated by tensile and hardness tests. The result revealed that in comparison with monolithic Al (ARBed Al without ceramic particles), the presence of nano-particles enhances specific strength of composites. Also, the results showed that with increasing ARB cycles, the microhardness of the composites increases. In addition, the specific strength and microhardness of the composite samples are higher than those of the monolithic Al. The density of the composite samples and monolithic Al was measured by the Archimedes method showing that the density decreases in presence of ceramic particles. © 2013 Elsevier Ltd.Item Open Access Quantitative phase evolution during mechano-synthesis of Ti-Ni-Cu shape memory alloys(Elsevier, 2012-05-29) Amini, R.; Alijani, F.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalTi-41Ni-9Cu shape memory alloy was synthesized by mechanical alloying of pure elemental Ti, Ni, and Cu powders using high-energy ball milling. The qualitative and quantitative phase analyses of the as-milled powders were done by X-ray diffraction (XRD) using Rietveld refinement and the alloys microstructure was studied by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Concerning the results, by milling evolution, the dissolution of the primary materials occurred at different rates and a considerable amount of the amorphous phase as well as B19′-martensite and B2-austenite was created. The formation of Ni solid solution was also evidenced prior to its dissolution. It was found that at sufficient milling time, the mechano-crystallization of the amorphous phase occurred and at the end of milling, the B19′-martensite is the dominant phase of the structure.Item Open Access Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders(Elsevier, 2013-11) Amini, R.; Mousavizad, S. M. M.; Abdollahpour, H.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalThe formation mechanism of Cu-11.5Al-4Mn alloys by mechanical alloying (MA) of pure elemental powders was investigated. During milling, the powder sampling was conducted at predetermined intervals from 1 h to 96 h. The quantitative phase analyses were done by X-ray diffraction and the particles size and morphology were studied by scanning electron microscopy. Furthermore, the microstructure investigation and phase identification were done by transmission electron microscopy. Concerning the results, the nanocrystalline Cu solid solution were formed at short milling times and, by milling evolution, the austenite-to-martensite (2H) phase transformation occurred. Moreover, the formation of considerable amount of amorphous phase and its partial transformation to crystalline phases during the milling process were revealed. It was also found that, by milling development, the powder morphology changes from lamellar to semi-spherical and their size initially increases, then reduces and afterward re-increases.Item Open Access Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics(2013) Alizadeh, M.; Ardakani H.A.; Amini, R.; Ghazanfari, M.R.; Ghaffari, M.Nanocrystalline calcium-copper-titanate (CCTO) dielectric powders were prepared by mechanical alloying. Phase transformations and structural evolution of the mechanically activated powders were investigated through the Rietveld refinement of the X-ray diffraction results. The crystallite size, lattice strain, and weight fraction of individual phases were estimated based on crystal structure refinement. Furthermore, the microstructural properties and thermal behavior of the milled powders were investigated by Transmission Electron Microscopy (TEM) and Differential Thermal Analysis (DTA), respectively. It was found that CCTO nanocrystals can be successfully synthesized after the amorphization of the initial crystalline materials. Semi-spherical nano-size particles were developed after sufficient milling time. Formation of an amorphous phase during the milling cycle was confirmed by the presence of the glass transition and crystallization peaks in the thermal analysis profiles. © 2012 Elsevier Ltd and Techna Group S.r.l.Item Open Access Structural, microstructural and thermal properties of lead-free bismuth-sodium-barium-titanate piezoceramics synthesized by mechanical alloying(2013) Amini, R.; Ghazanfari, M.R.; Alizadeh, M.; Ardakani H.A.; Ghaffari, M.Bismuth-sodium-barium-titanate piezoceramics with a composition of (Bi 0.5Na0.5)0.94Ba0.06TiO3 (BNBT) were prepared by mechanical alloying (MA). Structural analysis and phase identification were performed by X-ray diffraction (XRD). Microstructural studies and chemical composition homogeneity were performed by scanning electron microscope (SEM) coupled with energy dispersive X-ray analysis (EDX). Furthermore, thermal properties of the as-milled powders were evaluated by thermogravimetry/differential thermal analysis (TG/DTA). During the initial milling, the constituents were transformed to the perovskite, pyrochlore, and BNT phases; in addition, partial amorphization of the structure appeared during the milling cycle. As MA progressed, transformation of pyrochlore-to-perovskite and crystallization of the amorphous phase occurred and also, the BNBT phase was significantly developed. It was found that the MA process has the ability to synthesize the BNBT powders with a submicron particle size, regular morphology, and uniform elemental distribution. © 2012 Elsevier Ltd.