Browsing by Author "Alkar, A. Z."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Contact-free measurement of respiratory rate using infrared and vibration sensors(Elsevier BV, 2015) Erden, F.; Alkar, A. Z.; Çetin, A. EnisRespiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors.Item Open Access A robust system for counting people using an infrared sensor and a camera(Elsevier BV, 2015) Erden, F.; Alkar, A. Z.; Çetin, A. EnisIn this paper, a multi-modal solution to the people counting problem in a given area is described. The multi-modal system consists of a differential pyro-electric infrared (PIR) sensor and a camera. Faces in the surveillance area are detected by the camera with the aim of counting people using cascaded AdaBoost classifiers. Due to the imprecise results produced by the camera-only system, an additional differential PIR sensor is integrated to the camera. Two types of human motion: (i) entry to and exit from the surveillance area and (ii) ordinary activities in that area are distinguished by the PIR sensor using a Markovian decision algorithm. The wavelet transform of the continuous-time real-valued signal received from the PIR sensor circuit is used for feature extraction from the sensor signal. Wavelet parameters are then fed to a set of Markov models representing the two motion classes. The affiliation of a test signal is decided as the class of the model yielding higher probability. People counting results produced by the camera are then corrected by utilizing the additional information obtained from the PIR sensor signal analysis. With the proof of concept built, it is shown that the multi-modal system can reduce false alarms of the camera-only system and determines the number of people watching a TV set in a more robust manner.Item Open Access Sensors in assisted living: a survey of signal and image processing methods(Institute of Electrical and Electronics Engineers, 2016-03) Erden, F.; Velipasalar, S.; Alkar, A. Z.; Çetin, A. EnisOur society will face a notable demographic shift in the near future. According to a United Nations report, the ratio of the elderly population (aged 60 years or older) to the overall population increased from 9.2% in 1990 to 11.7% in 2013 and is expected to reach 21.1% by 2050 [1]. According to the same report, 40% of older people live independently in their own homes. This ratio is about 75% in the developed countries. These facts will result in many societal challenges as well as changes in the health-care system, such as an increase in diseases and health-care costs, a shortage of caregivers, and a rise in the number of individuals unable to live independently [2]. Thus, it is imperative to develop ambient intelligence-based assisted living (AL) tools that help elderly people live independently in their homes. The recent developments in sensor technology and decreasing sensor costs have made the deployment of various sensors in various combinations viable, including static setups as well as wearable sensors. This article presents a survey that concentrates on the signal processing methods employed with different types of sensors. The types of sensors covered are pyro-electric infrared (PIR) and vibration sensors, accelerometers, cameras, depth sensors, and microphones.