Browsing by Author "Alatan, A. A."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access 3-D motion estimation of rigid objects for video coding applications using an improved iterative version of the E-matrix method(Institute of Electrical and Electronics Engineers, 1998-02) Alatan, A. A.; Onural, L.As an alternative to current two-dimensional (2-D) motion models, a robust three-dimensional (3-D) motion estimation method is proposed to be utilized in object-based video coding applications. Since the popular E-matrix method is well known for its susceptibility to input errors, a performance indicator, which tests the validity of the estimated 3-D motion parameters both explicitly and implicitly, is defined. This indicator is utilized within the RANSAC method to obtain a robust set of 2-D motion correspondences which leads to better 3-D motion parameters for each object. The experimental results support the superiority of the proposed method over direct application of the E-matrix method.Item Open Access 3DTV-conference: the true vision-capture, transmission and display of 3D video, 3DTV-CON 2008 proceedings: preface(2008) Güdükbay, U.; Alatan, A. A.Item Open Access Çizge kesit yöntemi ile hiperspektral görüntülerde anomali tabanlı hedef tespiti(IEEE, 2015-05) Batı, E.; Erdinç, Acar; Çeşmeci, D.; Çalışkan, A.; Koz, A.; Aksoy, Selim; Ertürk, S.; Alatan, A. A.Hiperspektral hedef tespiti için yürütülen çalışmalar genel olarak iki sınıfta degerlendirilebilir. İlk sınıf olan anomali tespit yöntemlerinde, hedefin görüntünün geri kalanından farklı oldugu bilgisi kullanılarak görüntü analiz edilmektedir. Diğer sınıfta ise daha önceden bilgisi edinilmiş hedefe ait spektral imza ile görüntüdeki herbir piksel arasındaki benzerlik bulunarak hedefin konumu tespit edimektedir. Her iki sınıf yöntemin de önemli bir dezavantajı hiperspektral görüntü piksellerini bagımsız olarak degerlendirip, aralarındaki komşuluk ilişkilerini gözardı etmesidir. Bu makalede anomali tespit ve imza tabanlı tespit yakla¸sımlarını, pikseller arası komşuluk ilişkilerini de göz önünde bulundurarak birleştiren çizge yaklaşımına dayalı yeni bir yöntem önerilmiştir. Hedeflerin hem imza bilgisine sahip olundugu hem de anomali sayılabilecek ölçülerde olduğu varsayılarak önerilen çizge yaklaşımında önplan için imza bilgisi kullanan özgün bir türev tabanlı uyumlu filtre önerilmiştir. Arkaplan için ise seyreklik bilgisi kullanarak Gauss karışım bileşeni kestirimi yapan yeni bir anomali tespit yöntemi geliştirilmiştir. Son olarak komşular arası benzerligi tanımlamak için ise spektral bir benzerlik ölçütü olan spektral açı eleştiricisi kullanılmıştır. Önerilen çizge tabanlı yöntemin önplan, arkaplan ve komşuluk ilişkilerini uygun şekilde birleştirdigi ve önceki yöntemlere göre hedefi gürültüden arınmış bir bütün şeklinde başarıyla tespit edebildigi gözlemlenmiştir. The studies on hyperspectral target detection until now, has been treated in two approaches. Anomaly detection can be considered as the first approach, which analyses the hyperspectral image with respect to the difference between target and the rest of the hyperspectral image. The second approach compares the previously obtained spectral signature of the target with the pixels of the hyperspectral image in order to localize the target. A distinctive disadvantage of the aforementioned approaches is to treat each pixel of the hyperspectral image individually, without considering the neighbourhood relations between the pixels. In this paper, we propose a target detection algorithm which combines the anomaly detection and signature based hyperspectral target detection approaches in a graph based framework by utilizing the neighbourhood relations between the pixels. Assuming that the target signature is available and the target sizes are in the range of anomaly sizes, a novel derivative based matched filter is first proposed to model the foreground. Second, a new anomaly detection method which models the background as a Gaussian mixture is developed. The developed model estimates the optimal number of components forming the Gaussian mixture by means of utilizing sparsity information. Finally, the similarity of the neighbouring hyperspectral pixels is measured with the spectral angle mapper. The overall proposed graph based method has successfully combined the foreground, background and neighbouring information and improved the detection performance by locating the target as a whole object free from noises. © 2015 IEEE.Item Open Access Estimation of depth fields suitable for video compression based on 3-D structure and motion of objects(Institute of Electrical and Electronics Engineers, 1998-06) Alatan, A. A.; Onural, L.Intensity prediction along motion trajectories removes temporal redundancy considerably in video compression algorithms. In three-dimensional (3-D) object-based video coding, both 3-D motion and depth values are required for temporal prediction. The required 3-D motion parameters for each object are found by the correspondence-based E-matrix method. The estimation of the correspondences - two-dimensional (2-D) motion field - between the frames and segmentation of the scene into objects are achieved simultaneously by minimizing a Gibbs energy. The depth field is estimated by jointly minimizing a defined distortion and bitrate criterion using the 3-D motion parameters. The resulting depth field is efficient in the rate-distortion sense. Bit-rate values corresponding to the lossless encoding of the resultant depth fields are obtained using predictive coding; prediction errors are encoded by a Lempel-Ziv algorithm. The results are satisfactory for real-life video scenes.Item Open Access Gibbs model based 3D motion and structure estimation for object-based video coding applications(Springer, 1997) Onural, Levent; Alatan, A. A.; Li, H. H.; Sun, S.; Derin, H.Motion analysis is essential for any video coding scheme. A moving object in a 3D environment can be analyzed better by a 3D motion model instead of 2D models, and better modeling might lead to improved coding efficiency. Gibbs formulated joint segmentation and estimation of 2D motion not only improves the performance of each stage, but also generates robust point correspondences which are necessary for rigid 3D motion estimation algorithms. Estimated rigid 3D motion parameters of a segmented object are used to find the 3D structure of those objects by minimizing another Gibbs energy. Such an approach achieves error immunity compared to linear algorithms. A more general (non-rigid) motion model can also be proposed using Gibbs formulation which permits local elastic interactions in contrast to ultimately tight rigidity between object points. Experimental results are promising for both rigid and non-rigid 3D motion models and put these models forward as strong candidates to be used in object-based coding algorithms.Item Open Access Gibbs random field model based 3-D motion estimation from video sequences(IEEE, 1994) Alatan, A. A.; Levent, O.In contrast to previous global 3D motion concept, a Gibbs random field based method, which models local interactions between motion parameters defined at each point on the object, is proposed. An energy function which gives the joint probability distribution of motion vectors, is constructed. The energy function is minimized in order to find the most likely motion vector set. Some convergence problems, due to ill-posedness of the problem, are overcome by using the concept of hierarchical rigidity. In hierarchical rigidity, the objects are assumed to be almost rigid in the coarsest level and this rigidness is weakened at each level until the finest level is reached. The propagation of motion information between levels, is encouraged. At the finest level, each point have a motion vector associated with it and the interaction between these vectors are described by the energy function. The minimization of the energy function is achieved by using hierarchical rigidity, without trapping into a local minimum. The results are promising.Item Open Access Image sequence analysis for emerging interactive multimedia services-the European COST 211 framework(Institute of Electrical and Electronics Engineers, 1998-11) Alatan, A. A.; Onural, L.; Wollborn, M.; Mech, R.; Tuncel, E.; Sikora, T.Flexibility and efficiency of coding, content extraction, and content-based search are key research topics in the field of interactive multimedia. Ongoing ISO MPEG-4 and MPEG-7 activities are targeting standardization to facilitate such services. European COST Telecommunications activities provide a framework for research collaboration. COST 211 bis and COST 211 tcr activities have been instrumental in the definition and development of the ITU-T H.261 and H.263 standards for video-conferencing over ISDN and videophony over regular phone lines, respectively. The group has also contributed significantly to the ISO MPEG-4 activities. At present a significant effort of the COST 211 tcr group activities is dedicated toward image and video sequence analysis and segmentation - an important technological aspect for the success of emerging object-based MPEG-4 and MPEG-7 multimedia applications. The current work of COST 211 is centered around the test model, called the Analysis Model (AM). The essential feature of the AM is its ability to fuse information from different sources to achieve a high-quality object segmentation. The current information sources are the intermediate results from frame-based (still) color segmentation, motion vector based segmentation, and change-detection-based segmentation. Motion vectors, which form the basis for the motion vector based intermediate segmentation, are estimated from consecutive frames. A recursive shortest spanning tree (RSST) algorithm is used to obtain intermediate color and motion vector based segmentation results. A rule-based region processor fuses the intermediate results; a postprocessor further refines the final segmentation output. The results of the current AM are satisfactory; it is expected that there will be further improvements of the AM within the COST 211 project.Item Open Access Introduction to the issue on emerging techniques in 3-D(IEEE, 2012) Alatan, A. A.; Ostermann, J.; Onural, L.; AlRegib, G.; Mattoccia, S.; Yuan, C.The fifteen papers in this special section that focus on three dimensional content (3D), with particular emphasis on the fusion of conventional camera outputs with those captured by other modalities, such as active sensors, multi-spectral data or dynamic range images as well as applications that support the measurement and improvement of 3-D content.Item Open Access Piecewise-planar 3D reconstruction in rate-distortion sense(IEEE, 2007-05) İmre, E.; Güdükbay, Uğur; Alatan, A. A.In this paper, a novel rate-distortion optimization inspired 3D piecewise-planar reconstruction algorithm is proposed. The algorithm refines a coarse 3D triangular mesh, by inserting vertices in a way to minimize the intensity difference between an image and its prediction. The preliminary experiments on synthetic and real data indicate the validity of the proposed approach.Item Open Access Rate-distortion efficient piecewise planar 3-D scene representation from 2-D images(Institute of Electrical and Electronics Engineers, 2009-03) İmre, E.; Alatan, A. A.; Güdükbay, UğurIn any practical application of the 2-D-to-3-D conversion that involves storage and transmission, representation effi- ciency has an undisputable importance that is not reflected in the attention the topic received. In order to address this problem, a novel algorithm, which yields efficient 3-D representations in the rate distortion sense, is proposed. The algorithm utilizes two views of a scene to build a mesh-based representation incrementally, via adding new vertices, while minimizing a distortion measure. The experimental results indicate that, in scenes that can be approximated by planes, the proposed algorithm is superior to the dense depth map and, in some practical situations, to the block motion vector-based representations in the rate-distortion sense.Item Open Access Scene representation technologies for 3DTV-a survey(Institute of Electrical and Electronics Engineers, 2007-11) Alatan, A. A.; Yemez, Y.; Güdükbay, Uğur; Zabulis, X.; Müller, K.; Erdem, C.; Weigel, C.; Smolic, A.3-D scene representation is utilized during scene extraction, modeling, transmission and display stages of a 3DTV framework. To this end, different representation technologies are proposed to fulfill the requirements of 3DTV paradigm. Dense point-based methods are appropriate for free-view 3DTV applications, since they can generate novel views easily. As surface representations, polygonal meshes are quite popular due to their generality and current hardware support. Unfortunately, there is no inherent smoothness in their description and the resulting renderings may contain unrealistic artifacts. NURBS surfaces have embedded smoothness and efficient tools for editing and animation, but they are more suitable for synthetic content. Smooth subdivision surfaces, which offer a good compromise between polygonal meshes and NURBS surfaces, require sophisticated geometry modeling tools and are usually difficult to obtain. One recent trend in surface representation is point-based modeling which can meet most of the requirements of 3DTV, however the relevant state-of-the-art is not yet mature enough. On the other hand, volumetric representations encapsulate neighborhood information that is useful for the reconstruction of surfaces with their parallel implementations for multiview stereo algorithms. Apart from the representation of 3-D structure by different primitives, texturing of scenes is also essential for a realistic scene rendering. Image-based rendering techniques directly render novel views of a scene from the acquired images, since they do not require any explicit geometry or texture representation. 3-D human face and body modeling facilitate the realistic animation and rendering of human figures that is quite crucial for 3DTV that might demand real-time animation of human bodies. Physically based modeling and animation techniques produce impressive results, thus have potential for use in a 3DTV framework for modeling and animating dynamic scenes. As a concluding remark, it can be argued that 3-D scene and texture representation techniques are mature enough to serve and fulfill the requirements of 3-D extraction, transmission and display sides in a 3DTV scenario. © 2007 IEEE.Item Open Access Special issue on advances in three-dimensional television and video: Guest editorial(Elsevier BV, 2009) Güdükbay, Uğur; Alatan, A. A.; Güdükbay, Uğur; Alatan, A. A.