Browsing by Author "Akbudak, K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hypergraph partitioning based models and methods for exploiting cache locality in sparse matrix-vector multiplication(Society for Industrial and Applied Mathematics, 2013-02-27) Akbudak, K.; Kayaaslan, E.; Aykanat, CevdetSparse matrix-vector multiplication (SpMxV) is a kernel operation widely used in iterative linear solvers. The same sparse matrix is multiplied by a dense vector repeatedly in these solvers. Matrices with irregular sparsity patterns make it difficult to utilize cache locality effectively in SpMxV computations. In this work, we investigate single-and multiple-SpMxV frameworks for exploiting cache locality in SpMxV computations. For the single-SpMxV framework, we propose two cache-size-aware row/column reordering methods based on one-dimensional (1D) and two-dimensional (2D) top-down sparse matrix partitioning. We utilize the column-net hypergraph model for the 1D method and enhance the row-column-net hypergraph model for the 2D method. The primary aim in both of the proposed methods is to maximize the exploitation of temporal locality in accessing input vector entries. The multiple-SpMxV framework depends on splitting a given matrix into a sum of multiple nonzero-disjoint matrices. We propose a cache-size-aware splitting method based on 2D top-down sparse matrix partitioning by utilizing the row-column-net hypergraph model. The aim in this proposed method is to maximize the exploitation of temporal locality in accessing both input-and output-vector entries. We evaluate the validity of our models and methods on a wide range of sparse matrices using both cache-miss simulations and actual runs by using OSKI. Experimental results show that proposed methods and models outperform state-of-the-art schemes. (c)2013 Society for Industrial and Applied MathematicsItem Open Access Spatiotemporal graph and hypergraph partitioning models for sparse matrix-vector multiplication on many-core architectures(IEEE Computer Society, 2019) Abubaker, Nabil; Akbudak, K.; Aykanat, CevdetThere exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal locality for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these methods are extended to encapsulate both spatial and temporal localities based on cut/uncut net categorization obtained from vertex partitioning. These extensions of spatial and temporal hypergraph models encode the spatial locality primarily and the temporal locality secondarily, and vice-versa, respectively. However, the literature lacks models that simultaneously encode both spatial and temporal localities utilizing only vertex partitioning for further improving the performance of SpMV on shared-memory architectures. In order to fill this gap, we propose a novel spatiotemporal hypergraph model that leads to a one-phase spatiotemporal reordering method which encodes both types of locality simultaneously. We also propose a framework for spatiotemporal methods which encodes both types of locality in two dependent phases and two separate phases. The validity of the proposed spatiotemporal models and methods are tested on a wide range of sparse matrices and the experiments are performed on both a 60-core Intel Xeon Phi processor and a Xeon processor. Results show the validity of the methods via almost doubling the Gflop/s performance through enhancing data locality in parallel SpMV operations.