BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aghaeinia, Hassan"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    One-bit massive MIMO precoding using unsupervised deep learning
    (Institute of Electrical and Electronics Engineers, 2024-02-01) Hosseinzadeh, Mohsen; Aghaeinia, Hassan; Kazemi, Mohammad
    The recently emerged symbol-level precoding (SLP) technique is a promising solution in multi-user wireless communication systems due to its ability to transform harmful multi-user interference (MUI) into useful signals, thereby improving system performance. Conventional symbol-level precoding designs have a significant computational complexity that makes their practical implementation difficult and imposes excessive computational complexity on the system. To deal with this problem, we suggest a new deep learning (DL) based approach that utilizes low-complexity designs of symbol-level precoding. This paper focuses on DL-based one-bit precoding approaches for downlink massive multiple-input multiple-output (MIMO) systems, where one-bit digital-to-analog converters (DACs) are used to reduce cost and power. Unlike previous works, the optimized one-bit precoder for multiuser massive MIMO system (HDL-O1PmMIMO) for a wide range of signal-to-noise-ratio (SNR) has a low computational complexity, making it suitable for real precoding scenarios. In this paper, we first design an unsupervised DL-based precoder (UDL-O1PmMIMO) to address the low SNR scenarios, using which we then design a hybrid DL-based precoder (HDL-O1PmMIMO) to address both low and high SNR scenarios. The method suggested in this article utilizes a novel residual DL network structure, which helps overcome the problem of training very deep networks. Additionally, a novel customized cost function, specifically for one-bit precoding in massive MIMO systems, is introduced to optimize the performance of the system in handling interference. The results of an experiment conducted on a general test set using Python and MATLAB show that the proposed approach outperforms existing methods in three aspects: it has a lower bit error rate, it takes less time to generate the precoded vector, and it is more resistant to imperfect channel estimation.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback