BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Afrasiyabi, A."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An energy efficient additive neural network
    (IEEE, 2017) Afrasiyabi, A.; Nasir, B.; Yıldız, O.; Yarman-Vural, F. T.; Çetin, A. Enis
    In this paper, we propose a new energy efficient neural network with the universal approximation property over space of Lebesgue integrable functions. This network, called additive neural network, is very suitable for mobile computing. The neural structure is based on a novel vector product definition, called ef-operator, that permits a multiplier-free implementation. In ef-operation, the 'product' of two real numbers is defined as the sum of their absolute values, with the sign determined by the sign of the product of the numbers. This 'product' is used to construct a vector product in n-dimensional Euclidean space. The vector product induces the lasso norm. The proposed additive neural network successfully solves the XOR problem. The experiments on MNIST dataset show that the classification performances of the proposed additive neural networks are very similar to the corresponding multi-layer perceptron.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Non-euclidean vector product for neural networks
    (IEEE, 2018-04) Afrasiyabi, A.; Badawi, Diaa; Nasır, B.; Yıldız, O.; Yarman- Vural, F. T.; Çetin, A. Enis
    We present a non-Euclidean vector product for artificial neural networks. The vector product operator does not require any multiplications while providing correlation information between two vectors. Ordinary neurons require inner product of two vectors. We propose a class of neural networks with the universal approximation property over the space of Lebesgue integrable functions based on the proposed non-Euclidean vector product. In this new network, the 'product' of two real numbers is defined as the sum of their absolute values, with the sign determined by the sign of the product of the numbers. This 'product' is used to construct a vector product in RN. The vector product induces the l1 norm. The additive neural network successfully solves the XOR problem. Experiments on MNIST and CIFAR datasets show that the classification performance of the proposed additive neural network is comparable to the corresponding multi-layer perceptron and convolutional neural networks.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback