Browsing by Author "Aerts-Kaya, F."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Bone marrow mesenchymal stromal cells supportregeneration of intestinal damage in a colitis mouse model,independent of their CXCR4 expression(Wiley-Blackwell Publishing, Inc., 2024-05-14) Pervin, B.; Gizer, M.; Seker, M.E.; Erol, Ö.D.; Gür, S.N.; Polat, E.G.; Değirmenci Uzun, Bahar; Korkusuz, P.; Aerts-Kaya, F.Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of $CXCR4^{high}$ and $CXCR4^{low}$ MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.Item Open Access Global miRNA expression of bone marrow mesenchymal stem/stromal cells derived from Fanconi anemia patients(Springer, 2021-11-18) Cagnan, I.; Keles, M.; Keskus, Ayse Gokce; Tombaz, Melike; Sahan, O. B.; Aerts-Kaya, F.; Uckan-Cetinkaya, D.; Konu, Ozlen; Gunel-Ozcan, A.Fanconi anemia (FA) is a rare genetic disorder characterized by genomic instability, developmental defects, and bone marrow (BM) failure. Hematopoietic stem cells (HSCs) in BM interact with the mesenchymal stem/stromal cells (MSCs); and this partly sustains the tissue homeostasis. MicroRNAs (miRNAs) can play a critical role during these interactions possibly via paracrine mechanisms. This is the first study addressing the miRNA profile of FA BM–MSCs obtained before and after BM transplantation (preBMT and postBMT, respectively). Non-coding RNA expression profiling and quality control analyses were performed in Donors (n = 13), FA preBMT (n = 11), and FA postBMT (n = 6) BM–MSCs using GeneChip miRNA 2.0 Array. Six Donor-FA preBMT pairs were used to identify a differentially expressed miRNA expression signature containing 50 miRNAs, which exhibited a strong correlation with the signature obtained from unpaired samples. Five miRNAs (hsa-miR-146a-5p, hsa-miR-148b-3p, hsa-miR-187-3p, hsa-miR-196b-5p, and hsa-miR-25-3p) significantly downregulated in both the paired and unpaired analyses were used to generate the BM–MSCs’ miRNA—BM mononuclear mRNA networks upon integration of a public dataset (GSE16334; studying Donor versus FA samples). Functionally enriched KEGG pathways included cellular senescence, miRNAs, and pathways in cancer. Here, we showed that hsa-miR-146a-5p and hsa-miR-874-3p were rescued upon BMT (n = 3 triplets). The decrease in miR-146a-5p was also validated using RT-qPCR and emerged as a strong candidate as a modulator of BM mRNAs in FA patients.