BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Şaltepe, Behide"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Cellular biocatalysts using synthetic genetic circuits for prolonged and durable enzymatic activity
    (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Ahan, Recep Erdem; Şaltepe, Behide; Apaydın, Onur; Şeker, Urartu Özgür Şafak
    Cellular biocatalysts hold great promise for the synthesis of difficult to achieve compounds, such as complex active molecules. Whole‐cell biocatalysts can be programmed through genetic circuits to be more efficient, but they suffer from low stability. The catalytic activity of whole cells decays under stressful conditions, such as prolonged incubation times or high temperatures. In nature, microbial communities cope with these conditions by forming biofilm structures. In this study, it is shown that the use of biofilm structures can enhance the stability of whole‐cell biocatalysts. We employed two different strategies to increase the stability of whole‐cell catalysts and decrease their susceptibility to high temperature. In the first approach, the formation of a biofilm structure is induced by controlling the expression of one of the curli component, CsgA. The alkaline phosphatase (ALP) enzyme was used to monitor the catalytic activity of cells in the biofilm structure. In the second approach, the ALP enzyme was fused to the CsgA curli fiber subunit to utilize the protective properties of the biofilm on enzyme biofilms. Furthermore, an AND logic gate is introduced between the expression of CsgA and ALP by toehold RNA switches and recombinases to enable logical programming of the whole‐cell catalyst for biofilm formation and catalytic action with different tools. The study presents viable approaches to engineer a platform for biocatalysis processes.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback