BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Şahin, Furkan"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    Activation of epidermal growth factor receptors in triple-negative breast cancer cells by morphine; analysis through Raman spectroscopy and machine learning
    (Elsevier BV, 2024-05-15) Sezer, Gülay; Şahin, Furkan; Önses, Mustafa Serdar; Cumaoğlu, Ahmet
    Triple negative breast cancer (TNBC) is a very aggressive form of breast cancer, and the analgesic drug morphine has been shown to promote the proliferation of TNBC cells. This article investigates whether morphine causes activation of epidermal growth factor receptors (EGFR), the roles of μ-opioid and EGFR receptors on TNBC cell proliferation and migration. While examining the changes with molecular techniques, we also aimed to investigate the analysis ability of Raman spectroscopy and machine learning-based approach. Effects of morphine on the proliferation and migration of MDA.MB.231 cells were evaluated by MTT and scratch wound-healing tests, respectively. Morphine-induced phosphorylation of the EGFR was analyzed by western blotting in the presence and absence of μ-receptor antagonist naltrexone and the EGFR-tyrosine kinase inhibitor gefitinib. Morphine-induced EGFR phosphorylation and cell migration were significantly inhibited by pretreatments with both naltrexone and gefitinib; however, morphine-increased cell proliferation was inhibited only by naltrexone. While morphine-induced changes were observed in the Raman scatterings of the cells, the inhibitory effect of naltrexone was analyzed with similarity to the control group. Principal component analysis (PCA) of the Raman confirmed the epidermal growth factor (EGF)-like effect of morphine and was inhibited by naltrexone and partly by gefitinib pretreatments. Our in vitro results suggest that combining morphine with an EGFR inhibitor or a peripherally acting opioidergic receptor antagonist may be a good strategy for pain relief without triggering cancer proliferation and migration in TNBC patients. In addition, our results demonstrated the feasibility of the Raman spectroscopy and machine learning-based approach as an effective method to investigate the effects of agents in cancer cells without the need for complex and time-consuming sample preparation. The support vector machine (SVM) with linear kernel automatically classified the effects of drugs on cancer cells with ∼95% accuracy.
  • Loading...
    Thumbnail Image
    ItemRestricted
    Çağdaş Yaşamı Destekleme Derneği ve kız öğrencilere verdiği desteğin tarihi
    (Bilkent University, 2014) Kuyumcu, Ilgın; Güngör, Yalçın Mert; Akyurt, Aslı Sena; Polat, Begüm; Şahin, Furkan
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optically transparent metamaterial RF absorbers
    (2023-05) Şahin, Furkan
    Recent advances in metamaterials have allowed to impart unique properties to flat RF absorbers including broadband absorption, low thickness (in terms of the longest operating wavelength) and polarization insensitiveness, all essential to high-performance absorbers. For these RF absorbers, introducing additional properties of high optical transparency (in the visible range) and mechanical ro-bustness opens up also stealth window applications. However, achieving all of these critical characteristics in a single design is a challenging task. In this thesis, to address this challenge, we propose and demonstrate an optically transpar-ent, broadband, and polarization-insensitive RF absorbing metamaterial that is extremely thin (thickness = 0.079λL; λL: longest operating wavelength). Our design consists of a single dielectric layer of polymethyl methacrylate (PMMA) sandwiched between the top and bottom indium tin oxide (ITO) films, altogether providing high optical transmission. The bottom ITO film acts as a ground plane, which reduces the RF transmission significantly. On the other hand, the top ITO film adorns a unique pattern that minimizes the RF reflection across a particular frequency range. Here we obtained these customized ITO patterns using a novel design methodology. We developed the fabrication process specific to the pro-posed RF structure and fabricated their prototypes. To validate numerical simu-lation results, we measured experimentally the RF absorption of these fabricated prototypes. The experimental results show that the proof-of-concept absorbers achieve over 90% absorption between 4.4-11.2 GHz and over 95% absorption between 4.8-10.6 GHz. Furthermore, we found the fabricated absorbers to be in-sensitive to polarization angles and preserve 90% absorption for oblique incidence angles of 60° for TM and 40° for TE polarizations in agreement with the numer-ical predictions. Also, besides RF characterizations, we optically recorded the transmittance in the visible range to be 65% on average for the tested absorbers. These findings indicate that the proposed single-dielectric-layered architecture of optically transparent, broadband, polarization-insensitive RF absorbers, featur-ing a record relative thickness of 0.079λL, holds great promise for use in stealth window applications.
  • Loading...
    Thumbnail Image
    ItemRestricted
    Saraybosna'dan bir göç hikayesiyle başlayan serüven : Hotiç markası
    (Bilkent University, 2017) Gönül, Furkan; Şahin, Furkan; Uğurlu, Berke; Naz Üke, İrem; Altuğ Taş, Cihangir

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback