Browsing by Author "Çakmakyapan, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Developing a transducer based on localized surface plasmon resonance (LSPR) of gold nanostructures for nanobiosensor applications(Trans Tech Publications, 2013) Turhan, Adil Burak; Ataman, D.; Çakmakyapan, S.; Mutlu, M.; Özbay, Ekmel; Vlachos, D. S.; Hristoforou, E.In this work, we report the nanofabrication, optical characterization, and electromagnetic modeling of various nanostructure arrays for localized surface plasmon resonance (LSPR) based biosensing studies. Comparison of the experimental results and simulation outputs of various nanostructure arrays was made and a good correspondence was achieved.Item Open Access Electrically switchable metadevices via graphene(American Association for the Advancement of Science, 2018) Balcı, Osman; Kakenov, Nurbek; Karademir, E.; Balcı, S.; Çakmakyapan, S.; Polat, E. O.; Cağlayan, H.; Özbay, Ekmel; Kocabaş, CoşkunMetamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. Copyright