Computational Electromagnetics Research Center (BİLCEM)
Permanent URI for this communityhttps://hdl.handle.net/11693/115608
Browse
Browsing Computational Electromagnetics Research Center (BİLCEM) by Author "Ergul, O."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Accuracy: The Frequently Overlooked Parameter in the Solution of Extremely Large Problems(IEEE, 2011) Ergul, O.; Gürel, LeventWe investigate error sources and their effects on the accuracy of solutions of extremely large electromagnetics problems with parallel implementations of the multilevel fast multipole algorithm (MLFMA). Accuracy parameters and their effects on the accuracy of MLFMA solutions are studied for large-scale problems discretized with hundreds of millions of unknowns. We show that some error sources are more dominant and should be suppressed for more accurate solutions; identifying less-effective error sources may allow us to derive more efficient implementations. Based on our analysis, we determine a set of benchmark problems that can be used to compare the accuracy of solvers for large-scale computations. A benchmarking tool is provided at www.cem.bilkent.edu.tr/ benchmark.Item Open Access Analysis of Lossy Dielectric Objects with the Multilevel Fast Multipole Algorithm(IEEE, 2011) Ergul, O.; Gurel, LeventRigorous solutions of electromagnetics problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of solutions are compared for different objects and conductivity values. We show that iterative solutions of CTF are significantly accelerated as the conductivity increases and CTF becomes a good alternative to JMCFIE in terms of efficiency. Considering also its high accuracy, CTF seems to be a suitable formulation for the analysis of lossy dielectric objects.Item Open Access Benchmark Solutions of Large Problems for Evaluating Accuracy and Efficiency of Electromagnetics Solvers(IEEE, 2011) Ergul, O.; Gürel, LeventWe present a set of benchmark problems involving conducting spheres and their solutions using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Accuracy of the implementation is tested by comparing the computational results with analytical Mie-series solutions. Reference solutions are made available on an interactive website to evaluate and compare the accuracy and efficiency of fast solvers. We also demonstrate the capabilities of our solver on real-life problems involving complicated targets, such as the Flamme.