Department of Mechanical Engineering
Permanent URI for this communityhttps://hdl.handle.net/11693/115622
Browse
Browsing Department of Mechanical Engineering by Author "Acosta, D. M."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Piloted evaluation of a control allocation technique to recover from pilot-induced oscillations(American Institute of Aeronautics and Astronautics, 2015) Acosta, D. M.; Yıldız, Yıldıray; Craun, R. W.; Beard, S. D.; Leonard, M. W.; Hardy, G. H.; Weinstein, M.This paper describes the maturation of a control allocation technique designed to assist pilots in recovery from pilot-induced oscillations. The control allocation technique to recover from pilot-induced oscillations is designed to enable next-generation high-efficiency aircraft designs. Energy-efficient next-generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. A common issue on aircraft with actuator rate limitations is they are susceptible to pilot-induced oscillations caused by the phase lag between the pilot inputs and control surface response. The control allocation technique to recover from pilot-induced oscillations uses real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a nonlinear aircraft model in the NASA Ames Research Center's Vertical Motion Simulator. Results indicate that the control allocation technique to recover from pilot-induced oscillations helps reduce oscillatory behavior introduced by control surface rate limiting, including the pilot-induced oscillation tendencies reported by pilots.