Department of Information Systems and Technologies
Permanent URI for this communityhttps://hdl.handle.net/11693/115471
Browse
Browsing Department of Information Systems and Technologies by Author "Aasim, Muhammad"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access A comparative and practical approach using quantum machine learning (QML) and support vector classifier (SVC) for Light emitting diodes mediated in vitro micropropagation of black mulberry (Morus nigra L.)(Elsevier BV, 2024-03-28) Aasim, Muhammad; Katırcı, Ramazan; Acar, Alpaslan Şevket; Ali, Seyid AmjadIn this study, in vitro regeneration protocol for black mulberry (Morus nigra L.) was optimized using 18 distinct combinations of benzylaminopurine (BAP) with either naphthalene acetic acid (NAA) or Indole butyric acid (IBA). The top two combinations were then utilized to optimize the light intensity given by light-emitting diodes (LEDs). Supplementation of 0.5 mg L-1 BAP and 0.25 mg L-1 IBA with 60 PPFD light intensity yielded a maximum regeneration coefficient (2.53), shoot length (6.01 cm), and number of leaves (10.73). The regenerated plantlets were rooted with IBA under in vitro conditions followed by successful acclimatization of plantlets under greenhouse conditions. The results were further investigated by linking them with an emphasis on improving the Support Vector Classifier (SVC) using quantum computing techniques, and this work embarked on a groundbreaking path to integrate the realms of machine learning (ML) with quantum computing. For this purpose, the traditional Support Vector Classifier (SVC) model was compared with quantum-enhanced algorithms, including SVC with the quantum kernel (SVC Qkernel), SVC with quantum features (SVC Qfeatures), Quantum Support Vector Classifier (QSVC), and the Variational Quantum Circuit (VQC). The quantum-enhanced models showed a range of results, indicating their complex and subtle character, whereas classical SVC performed robustly for multiple metrics. Quantum kernel-based SVC demonstrated an interesting trade-off between recall and precision, indicating its proficiency in processing particular data properties.Item Open Access A unified framework of response surface methodology and coalescing of Firefly with random forest algorithm for enhancing nano-phytoremediation efficiency of chromium via in vitro regenerated aquatic macrophyte coontail (Ceratophyllum demersum L.)(Springer, 2024-06-11) Ali, Seyid Amjad; Gümüş, Numan Emre; Aasim, MuhammadNano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiO2NPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R2 scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.Item Open Access Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H2O2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.)(Springer Dordrecht, 2024-03-25) Aasim, Muhammad; Yildirim, Busra; Say, Ahmet; Ali, Seyid Amjad; Aytac, Selim; Nadeem, Muhammad AzharIndustrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 x Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 x 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.Item Open Access Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans(Springer, 2023-08-02) Özcan, Esra; Atar, Hasan Hüseyin; Ali, Seyid Amjad; Aasim, MuhammadThe application of plant tissue culture protocols for aquatic plants has been widely adopted in recent years to produce cost-effective plants for aquarium industry. In vitro regeneration protocol for the two different hydrophytes Hemianthus callitrichoides (Cuba) and Riccia fluitans were optimized for appropriate basal medium, sucrose, agar, and plant growth regulator concentration. The MS No:3B and SH + MSVit basal medium yielded a maximum clump diameter of 5.53 cm for H. callitrichoides and 3.65 cm for R. fluitans. The application of 20 g/L sucrose was found appropriate for yielding larger clumps in both species. Solidification of the medium with 1 g/L agar was optimized for inducing larger clumps with rooting for both species. Provision of basal medium with any concentration of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) was found detrimental for inducing larger clumps for both species. The largest clumps of H. callitrichoides (5.51 cm) and R. fluitans (4.59 cm) were obtained on basal medium without any plant growth regulators. The attained data was also predicted and validated by employing multilayer perceptron (MLP), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The performance of the models was tested with three different performance metrics, namely, coefficient of regression (R2), means square error (MSE), and mean absolute error (MAE). Results revealed that MLP and RF models performed better than the XGBoost model. The protocols developed in this study have shown promising outcomes and the findings can irrefutably assist to produce H. callitrichoides and R. fluitans on a large scale for the local aquarium industry.Item Embargo Computing artificial neural network and genetic algorithm for the feature optimization of basal salts and cytokinin-auxin for in vitro organogenesis of royal purple (cotinus coggygria scop)(Elsevier BV, 2023-09-01) Aasim, Muhammad; Ayhan, Ayşe; Katırcı, Ramazan; Acar, Alpaslan Şevket; Ali, Seyid AmjadThis study presents the in vitro regneration protocol for Royal purple [(Cotinus coggygria Scop. (syn.: Rhus cotinus L.)] from nodal segment explants followed by optimizing the input variable combinations with the aid of PyTorch ANN and Genetic Algorithm (GA). The Murashige and Skoog (MS) culture medium yielded relatively higher regeneration frequency (91.52 %) and shoot count (1.96) as compared to woody plant medium (WPM), which yielded 84.58 % regeneration and shoot count (1.61) per explant. The supplementation of plant growth regulators (PGRs) + MS medium yielded 80.0–100.0 % shoot regeneration and 1.48–3.25 shoot counts compared to 60.0–100.0 % shoot regeneration and 1.00–2.37 shoots from the combination of PGRs + WPM. In order to predict the shoot count and regeneration with the aid of a mathematical model, the machine learning algorithms of Multilayer Perceptron (MLP), Support Vector Regression (SVR), Extreme Gradient Boosting (XGB), and Random Forest (RF) models were utilized. The highest R2 values for both output variables were acquired using MLP model in PyTorch platform. The R2 scores for regeneration and shoot counting were recorded as 0.69 and 0.71 respectively. NSGA-II algorithm revealed the 1.25 mg/L BAP (6-Benzylaminopurine), 0.02 mg/L NAA (Naphthalene acetic acid), and 0.03 mg/L IBA (Indole butyric acid) in WPM medium as an optimum combination for 100 % regeneration. On the other hand, the algorithm suggested multiple combination in MS medium for maximum shoot counting.Item Open Access Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms(Frontiers Media S.A., 2022-08-24) Aasim, Muhammad; Katirci, Ramazan; Baloch, Faheem Shehzad; Mustafa, Zemran; Bakhsh, Allahv; Nadeem, Muhammad Azhar; Ali, Seyid Amjad; Hatipoğlu, Rüştü; Çiftçi, Vahdettin; Habyarimana, Ephrem; Karaköy, Tolga; Chung, Yong SukCommon bean is considered a recalcitrant crop for in vitro regeneration and needs a repeatable and efficient in vitro regeneration protocol for its improvement through biotechnological approaches. In this study, the establishment of efficient and reproducible in vitro regeneration followed by predicting and optimizing through machine learning (ML) models, such as artificial neural network algorithms, was performed. Mature embryos of common bean were pretreated with 5, 10, and 20 mg/L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and 1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20 mg/L BAP exerted a negative impact and resulted in minimum shoot regeneration frequency and shoot count, but produced longer shoots. All output variables (shoot regeneration frequency, shoot counts, and shoot length) increased significantly with the enhancement of BAP concentration in the post-treatment medium. Interaction of the pretreatment × post-treatment medium revealed the need for a specific combination for inducing a high shoot regeneration frequency. Higher shoot count and shoot length were achieved from the interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP and 20 mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed that R2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and 0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from 0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to 0.0404 for shoot length from all ML models. Among the utilized models, the multilayer perceptron model provided a better prediction and optimization for all output variables, compared to other models. The achieved results can be employed for the prediction and optimization of plant tissue culture protocols used for biotechnological approaches in a breeding program of common beans. Copyright © 2022 Aasim, Katirci, Baloch, Mustafa, Bakhsh, Nadeem, Ali, Hatipoğlu, Çiftçi, Habyarimana, Karaköy and Chung.Item Open Access Phosphate-solubilizing fungus (PSF) - mediated phosphorous solubilization and validation through Artificial intelligence computation(Springer Dordrecht, 2024-11-02) Ölmez, Fatih; Mustafa, Zemran; Türkölmez, Şahimerdan; Bildirici, Aslıhan Esra; Ali, Seyid Amjad; Aasim, MuhammadPhosphate-solubilizing fungus (PSF) strain alaromyces funiculosus was investigated for phosphorus solubilization, utilizing a range of pH levels and phosphate sources, followed by data confirmation through artificial intelligence modeling. T. funiculosus strain was exposed to five different phosphate sources $[Ca_3(PO_4)_2$, $FePO^{4}$, $CaHPO^{4}$, $AlPO^{4}$, and phytin] at different pH levels (4.5, 5.5, 6.5, 7.0, and 7.5). ANOVA, Pareto charts, and normal plots were used for analyzing the data. Artificial intelligence-based multilayer perceptron (MLP), random forest (RF) and extreme gradient boosting (XGBoost) models were used for data validation and prediction. Five-fold more phosphate (P) solubility by T. funiculosus was registered as compared to the control. The maximum soluble P was found at pH 4.5 (318324 ppb) and $CaHPO^{4}$ (444045 ppb). Combination of phytin × 4.5 pH yielded the highest dissolved phosphorus (1537988 ppb), followed by 127458 ppb from the control × 4.5 pH. Pareto chart and normal plot analysis showedthe negative impact of pH (B), pH × F/C (fungus/control) × P-Source (ABC), and F/C (A) factor. Whereas pH × P-Source (AC) and P-Source (C) has positive impact on P solubility. The maximum $R^{2}$ scores showed the order of RF (0.944) > MLP (0.938) > XGBoost (0.899). T. funiculosus strain has a grain potential for sustainable use for different types of phosphate sources. Application AI/ML models based on different performance metrics predicted the validated the attained results. In future research, it is recommended to check the efficacy of developed strategy under field conditions and to check the impact on soil and plant.Item Open Access Response surface methodology and artifcial intelligence modeling for in vitro regeneration of Brazilian micro sword (lilaeopsis brasiliensis)(Springer Dordrecht, 2024-04-02) Ali, Seyid Amjad; Aasim, MuhammadIn this study, response surface methodology (RSM) was used to optimize in vitro regeneration of the Brazilian micro sword (Lilaeopsis brasiliensis) aquatic plant, followed by data prediction and validation using machine learning algorithms. The basal salt, sucrose and Benzyaminopurine (BAP) concentrations were derived from Box-Behnken design of RSM. The response surface regression analysis revealed that 1.0 g/L MS + 0.1 mg/L BAP + 25 g/L sucrose was optimized for maximum regeneration (100%), shoot counts (63.2), and fresh weight (1.382 g). The RSM-based predicted scores were fairly similar to the actual scores, which were 100% regeneration, 63.39 shoot counts, and 1.44 g fresh weight. Pareto charts analysis illustrated the significance of MS for regeneration and fresh weight but remained insignificant. Conversely, MS × BAP was found to be the most crucial factor for the shoot counts, with MS coming in second and having a major influence. The analysis of the normal plot ascertained the negative impact of elevated MS concentration on shoot counts and enhanced shoot counts from the combination of MS × BAP. Results were further optimized by constructing contour and surface plots. The response optimizer tool demonstrated that maximum shoot counts of 63.26 and 1.454 g fresh weight can be taken from the combination of 1.0 g/L MS + 0.114 mg/L BAP + 23.94 g/L. Using three distinct performance criterias, the results of machine learning models showed that the multilayer perceptron (MLP) model performed better than the random forest (RF) model. Our findings suggest that the results may be utilized to optimize various input variables using RSM and verified via ML models.Item Open Access Synergizing LED technology and hydropriming for intelligent modeling and mathematical expressions to optimize chickpea germination and growth indices(Springer New York LLC, 2024-03-29) Aasim, Muhammad; Akın, Fatma; Ali, Seyid AmjadThe influence of hydropriming and Light Emitting Diodes (LED) on germination and growth indices, followed by optimizing and validation via artificial intelligence-based models was carried out in this research. White LEDs (W-LEDs) were more effective by yielding the most effective growth indices, such as mean germination time (MGT) (1.11 day), coefficient of variation of germination time (CV t ) (20.72%), mean germination rate (MR) (0.81 day-1), uncertainty (U) (0.40 bit), and synchronization (Z values) (0.79); the optimum MGT (1.09 day), CV t (15.97%), MR (0.77 day-1), U (0.32 bit), and Z (0.55) values were found after 2 h of hydropriming, which was responsible for all efficient growth indicators. W-LEDs with 1 h hydropriming proved to be the ideal LED and hydropriming combination. Results on growth indices for in vitro seedlings were completely different from those on germination indices, and the most desirable germination indices were linked to red LEDs (R-LEDs). Whereas 4 h hydropriming was most effective for the post-germination process. Pareto charts, normal plots, contour plots, and surface plots were created to optimize the input variables. Finally, the data were predicted using Arificial Neural Network (ANN) inspired multilayer perceptron (MLP) and machine learning-based random forest (RF) algorithms. For both models, plant height was correlated with maximum R 2 values. Whereas, all output variables had relatively low mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE) scores, indicating that both models performed well. The results of this investigation disclosed a link between certain LEDs and hydropriming treatment for in vitro germination indices and plant growth.