Applied Sciences
Permanent URI for this communityhttps://hdl.handle.net/11693/115470
Browse
Browsing Applied Sciences by Author "Aasim, Muhammad"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans(Springer, 2023-08-02) Özcan, Esra; Atar, Hasan Hüseyin; Ali, Seyid Amjad; Aasim, MuhammadThe application of plant tissue culture protocols for aquatic plants has been widely adopted in recent years to produce cost-effective plants for aquarium industry. In vitro regeneration protocol for the two different hydrophytes Hemianthus callitrichoides (Cuba) and Riccia fluitans were optimized for appropriate basal medium, sucrose, agar, and plant growth regulator concentration. The MS No:3B and SH + MSVit basal medium yielded a maximum clump diameter of 5.53 cm for H. callitrichoides and 3.65 cm for R. fluitans. The application of 20 g/L sucrose was found appropriate for yielding larger clumps in both species. Solidification of the medium with 1 g/L agar was optimized for inducing larger clumps with rooting for both species. Provision of basal medium with any concentration of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) was found detrimental for inducing larger clumps for both species. The largest clumps of H. callitrichoides (5.51 cm) and R. fluitans (4.59 cm) were obtained on basal medium without any plant growth regulators. The attained data was also predicted and validated by employing multilayer perceptron (MLP), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The performance of the models was tested with three different performance metrics, namely, coefficient of regression (R2), means square error (MSE), and mean absolute error (MAE). Results revealed that MLP and RF models performed better than the XGBoost model. The protocols developed in this study have shown promising outcomes and the findings can irrefutably assist to produce H. callitrichoides and R. fluitans on a large scale for the local aquarium industry.Item Embargo Computing artificial neural network and genetic algorithm for the feature optimization of basal salts and cytokinin-auxin for in vitro organogenesis of royal purple (cotinus coggygria scop)(Elsevier BV, 2023-09-01) Aasim, Muhammad; Ayhan, Ayşe; Katırcı, Ramazan; Acar, Alpaslan Şevket; Ali, Seyid AmjadThis study presents the in vitro regneration protocol for Royal purple [(Cotinus coggygria Scop. (syn.: Rhus cotinus L.)] from nodal segment explants followed by optimizing the input variable combinations with the aid of PyTorch ANN and Genetic Algorithm (GA). The Murashige and Skoog (MS) culture medium yielded relatively higher regeneration frequency (91.52 %) and shoot count (1.96) as compared to woody plant medium (WPM), which yielded 84.58 % regeneration and shoot count (1.61) per explant. The supplementation of plant growth regulators (PGRs) + MS medium yielded 80.0–100.0 % shoot regeneration and 1.48–3.25 shoot counts compared to 60.0–100.0 % shoot regeneration and 1.00–2.37 shoots from the combination of PGRs + WPM. In order to predict the shoot count and regeneration with the aid of a mathematical model, the machine learning algorithms of Multilayer Perceptron (MLP), Support Vector Regression (SVR), Extreme Gradient Boosting (XGB), and Random Forest (RF) models were utilized. The highest R2 values for both output variables were acquired using MLP model in PyTorch platform. The R2 scores for regeneration and shoot counting were recorded as 0.69 and 0.71 respectively. NSGA-II algorithm revealed the 1.25 mg/L BAP (6-Benzylaminopurine), 0.02 mg/L NAA (Naphthalene acetic acid), and 0.03 mg/L IBA (Indole butyric acid) in WPM medium as an optimum combination for 100 % regeneration. On the other hand, the algorithm suggested multiple combination in MS medium for maximum shoot counting.Item Open Access Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms(Frontiers Media S.A., 2022-08-24) Aasim, Muhammad; Katirci, Ramazan; Baloch, Faheem Shehzad; Mustafa, Zemran; Bakhsh, Allahv; Nadeem, Muhammad Azhar; Ali, Seyid Amjad; Hatipoğlu, Rüştü; Çiftçi, Vahdettin; Habyarimana, Ephrem; Karaköy, Tolga; Chung, Yong SukCommon bean is considered a recalcitrant crop for in vitro regeneration and needs a repeatable and efficient in vitro regeneration protocol for its improvement through biotechnological approaches. In this study, the establishment of efficient and reproducible in vitro regeneration followed by predicting and optimizing through machine learning (ML) models, such as artificial neural network algorithms, was performed. Mature embryos of common bean were pretreated with 5, 10, and 20 mg/L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and 1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20 mg/L BAP exerted a negative impact and resulted in minimum shoot regeneration frequency and shoot count, but produced longer shoots. All output variables (shoot regeneration frequency, shoot counts, and shoot length) increased significantly with the enhancement of BAP concentration in the post-treatment medium. Interaction of the pretreatment × post-treatment medium revealed the need for a specific combination for inducing a high shoot regeneration frequency. Higher shoot count and shoot length were achieved from the interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP and 20 mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed that R2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and 0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from 0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to 0.0404 for shoot length from all ML models. Among the utilized models, the multilayer perceptron model provided a better prediction and optimization for all output variables, compared to other models. The achieved results can be employed for the prediction and optimization of plant tissue culture protocols used for biotechnological approaches in a breeding program of common beans. Copyright © 2022 Aasim, Katirci, Baloch, Mustafa, Bakhsh, Nadeem, Ali, Hatipoğlu, Çiftçi, Habyarimana, Karaköy and Chung.