Graduate School of Engineering and Science
Permanent URI for this collectionhttps://hdl.handle.net/11693/115678
Browse
Browsing Graduate School of Engineering and Science by Author "Abraş, İrem Fatma"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Assessment of immune potency of SARS-CoV-2 VLP vaccine in mice, enhanced through different adjuvants and liposome complexation(2023-08) Abraş, İrem FatmaSARS-CoV-2, emerging in December 2019 in Wuhan, China, led to a swift global pandemic declaration in March 2020, prompting widespread vaccine development. Most vaccines target specific regions, mainly the spike protein. In our lab, we have employed an innovative virus-like particle (VLP) vaccine approach encompassing all four structural proteins of the virus: spike, nucleocapsid, membrane, and envelope. Our study utilizes sterically stabilized cationic liposomes (SSCL) to encapsulate VLPs expressing the Delta variant spike protein, along with various adjuvants: CpG ODN, poly(I:C), and 2’3’-cGAMP. We characterized liposomes using tunable resistive pulse sensing for size and concentration. In C57BL/6 mice, we administered primary and two booster injections on Day 0, Day 15, and Day 73, respectively, collecting blood samples at intervals (Day 14, Day 28, Day 42, Day 72, and Day 90). To assess vaccine impact on mouse humoral immunity, we conducted ELISAs for total IgG, IgG1, and IgG2c antibodies against recombinant Spike and the receptor-binding domain (RBD). IgG titers increased until Day 42, remained stable or slightly decreased on Day 72, and significantly rose on Day 90. We calculated IgG2c/IgG1 ratios, reflecting Th1 immune responses, revealing enhanced cellular immunity potential in groups with adjuvants compared to the VLP-only group. This study underscores the effectiveness of our VLP vaccine strategy in stimulating robust immune responses and opens avenues for further research and development.