Scholarly Publications - ARL
Permanent URI for this collectionhttps://hdl.handle.net/11693/115569
Browse
Browsing Scholarly Publications - ARL by Author "Cao, Q."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes(American Chemical Society, 2009-04-08) Kocabaş, Coşkun; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X.; Kim, H.-S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A.The unique electronic properties of single-walled carbon nanotubes (SWNTs) make them promising candidates for next generation electronics, particularly in systems that demand high frequency (e.g., radio frequency, RF) operation. Transistors that incorporate perfectly aligned, parallel arrays of SWNTs avoid the practical limitations of devices that use individual tubes, and they also enable comprehensive experimental and theoretical evaluation of the intrinsic properties. Thus, devices consisting of arrays represent a practical route to use of SWNTs for RF devices and circuits. The results presented here reveal many aspects of device operation in such array layouts, including full compatibility with conventional small signal models of RF response. Submicrometer channel length devices show unity current gain (ft) and unity power gain frequencies (fmax) as high as ∼5 and ∼9 GHz, respectively, with measured scattering parameters (S-parameters) that agree quantitatively with calculation. The small signal models of the devices provide the essential intrinsic parameters: saturation velocities of 1.2 × 107 cm/s and intrinsic values of ft of ∼30 GHz for a gate length of 700 nm, increasing with decreasing length. The results provide clear insights into the challenges and opportunities of SWNT arrays for applications in RF electronics.Item Open Access Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications(American Chemical Society, 2007-10) Kang, S. J.; Kocabaş, Coşkun; Kim, H.-S.; Cao, Q.; Meitl, M. A.; Khang, D.-Y.; Rogers, J. A.We developed means to form multilayer superstructures of large collections of single-walled carbon nanotubes (SWNTs) configured in horizontally aligned arrays, random networks, and complex geometries of arrays and networks on a wide range of substrates. The approach involves guided growth of SWNTs on crystalline and amorphous substrates followed by sequential, multiple step transfer of the resulting collections of tubes to target substrates, such as high-k thin dielectrics on silicon wafers, transparent plates of glass, cylindrical tubes and other curved surfaces, and thin, flexible sheets of plastic. Electrical measurements on dense, bilayer superstructures, including crossbars, random networks, and aligned arrays on networks of SWNTs reveal some important characteristics of representative systems. These and other layouts of SWNTs might find applications not only in electronics but also in areas such as optoelectronics, sensors, nanomechanical systems, and microfluidics.