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COHEN-MACAULAYNESS OF TANGENT CONES

FEZA ARSLAN

(Communicated by Wolmer V. Vasconcelos)

Abstract. We give a criterion for checking the Cohen-Macaulayness of the
tangent cone of a monomial curve by using the Gröbner basis. For a family of
monomial curves, we give the full description of the defining ideal of the curve
and its tangent cone at the origin. By using this family of curves and their
extended versions to higher dimensions, we prove that the minimal number of
generators of a Cohen-Macaulay tangent cone of a monomial curve in an affine
l-space can be arbitrarily large for l ≥ 4 contrary to the l = 3 case shown by
Robbiano and Valla. We also determine the Hilbert series of the associated
graded ring of this family of curves and their extended versions.

1. Introduction

In this article, our main interest is to study the Cohen-Macaulayness of the tan-
gent cone of a monomial curve. In general, it is important to discover whether the
associated graded ring of a local ring (R,m) is Cohen-Macaulay, since this prop-
erty assures a better control on the blow-up of Spec(R) along V (m); in particular
it reduces the computation of the Hilbert function of the ring to a computation of
the Hilbert function of an Artin local ring [11]. The computation of the Hilbert
function of an Artin local ring is trivial, because it has a finite number of nonzero
values.

The Cohen-Macaulayness of the tangent cone of a monomial curve C having
parameterization

x1 = tn1 , x2 = tn2 , ..., xl = tnl

can be studied both as the Cohen-Macaulayness of the associated graded ring of
A = k[[tn1 , tn2 , ..., tnl ]] with respect to the maximal ideal m = (tn1 , tn2 , ..., tnl)
(which is

⊕∞
i=0m

i/mi+1 and denoted by grm(k[[tn1 , tn2 , ..., tnl ]])) or as the Cohen-
Macaulayness of the ring k[x1, x2, ..., xl]/I(C)∗ where I(C) is the defining ideal of
C,

{f(x1, ..., xl) such that f(x1, ..., xl) ∈ k[x1, ..., xl], f(tn1 , ..., tnl) = 0, t
transcendental over k},

and I(C)∗ is the ideal generated by the polynomials f∗ for f in I(C), where f∗ is
the homogeneous summand of f of least degree.
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2244 FEZA ARSLAN

By using the notion of super-regular sequence, Herzog gives a necessary and
sufficient condition for grm(k[[tn1 , tn2 , ..., tnl ]]) to be Cohen-Macaulay [8]. In [6],
Garcia obtains the same result with a different approach. Cavaliere and Niesi
also attack the same problem by studying the semigroup ring k[S] where S ⊂ N2 is
generated by (n1, 0), (n2, n2−n1), ..., (nl, nl−n1), (0, n1). They introduce the notion
of standard bases for S and give a simple criterion for the Cohen-Macaulayness of
the rings k[S] and grm(k[[tn1 , tn2 , ..., tnl ]]) [4].

In [10], Robbiano and Valla give a characterization of standard bases, which relies
on homological methods and is particularly useful while dealing with determinantal
ideals. By using this theory with Herzog’s [7] description of the defining ideals of
monomial curves for l = 3, they give a classification of these curves by their tangent
cones at the origin. They prove that a monomial curve C having parameterization

x1 = tn1 , x2 = tn2 , x3 = tn3(1.1)

has Cohen-Macaulay tangent cone at the origin if and only if the minimal number of
generators of the tangent cone, that is, µ(I(C)∗), is less than or equal to three. We
investigate and show that in higher dimensions, the minimal number of generators
of a Cohen-Macaulay tangent cone of a monomial curve can be arbitrarily large.
Namely, in l-space with l > 3, there are monomial curves with arbitrarily large
µ(I(C)∗) and Cohen-Macaulay tangent cones.

For a family of monomial curves Cm in 4-space with n1 = m(m + 1), n2 =
m(m+1)+1, n3 = (m+1)2 and n4 = (m+1)2+1, (m ≥ 2), we give a description of
the defining ideal I(Cm) (Proposition 3.2) and by using Gröbner bases, we compute
a minimal generator set for I(Cm)∗ (Proposition 3.4) such that µ(I(Cm)∗) = 2m+2
and show that k[x1, x2, x3, x4]/I(Cm)∗ is Cohen-Macaulay (Theorem 3.1) by using
the checking criterion given in Section 2 (Theorem 2.1). We extend this result to
higher dimensions. We also determine the Hilbert series of the associated graded
ring of this family of curves and their extended versions (Remark 3.7 and Remark
4.4).

Let us summarize the notation: C will denote a curve in l-affine space, having
parameterization

x1 = tn1 , x2 = tn2 , ..., xl = tnl(1.2)

where n1, n2, ..., nl are positive integers with 1 < n1 < n2 < ... < nl and n1, n2, ..., nl
is a minimal set of generators for the numerical semigroup 〈n1, n2, ..., nl〉 = {n | n =∑l
i=1 aini, ai’s are nonnegative integers}. I(C) is the defining ideal of C. I(C)∗ is

the ideal generated by the polynomials f∗ for f in I(C), where f∗ is the homogeneous
summand of f of least degree, and µ(I(C)∗) is the minimal number of generators of
the tangent cone of the monomial curve C. We denote the associated graded ring
of A = k[[tn1 , tn2 , ..., tnl ]] with respect to the maximal ideal m = (tn1 , tn2 , ..., tnl)
by grm(k[[tn1 , tn2 , ..., tnl ]]).

2. When is grm(k[[tn1 , tn2 , ..., tnl ]]) Cohen-Macaulay?

In this section, we state and prove the following theorem, which we use for
checking the Cohen-Macaulayness of the tangent cone of a monomial curve C by
considering the ideal I(C)∗

Theorem 2.1. Let C be a curve as in (1.2). Let g1, ..., gs be a minimal Gröbner
basis for I(C)∗ with respect to a reverse lexicographic order that makes x1 the lowest
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COHEN-MACAULAYNESS OF TANGENT CONES 2245

variable. Then grm(k[[tn1 , tn2 , ..., tnl ]]) is Cohen-Macaulay if and only if x1 6 | in(gi)
for 1 ≤ i ≤ s, where in(gi) is the leading term of gi.

To prove this theorem, we first recall the following definition and lemmas. (Here,
we only give the definition of the reverse lexicographic order. For definitions of
monomial order, multidegree, Gröbner basis, etc., see [5].)

Definition 2.2 ([5, p. 57] Reverse Lex Order). Let α, β ∈ Zl≥0. We say α >grevlex
β if

| α |=
∑n
i=1 αi >| β |=

∑n
i=1 βi, or | α |=| β |

in α− β ∈ Z l, the right-most nonzero entry is negative.

Lemma 2.3 (Bayer-Stillmann [12, p. 32]). Let I ⊂ k[x1, ..., xl] be a homogeneous
ideal and consider reverse lexicographic order that makes x1 the lowest variable.
Then

I : x1 = I ⇔ in(I) : x1 = in(I)(2.1)

where in(I) is the ideal generated by in(f)’s with f ∈ I.

Lemma 2.4 ([6, Theorem 7]). grm(k[[tn1 , tn2 , ..., tnl ]]) is Cohen-Macaulay if and
only if tn1 is not a zero divisor in grm(k[[tn1 , tn2 , ..., tnl ]]).

Proof of Theorem 2.1. From the isomorphism

grm(k[[tn1 , tn2 , ..., tnl ]]) ∼= k[x1, x2, ..., xl]/I(C)∗(2.2)

tn1 is not a zero divisor in grm(k[[tn1 , tn2 , ..., tnl ]]) if and only if x1 is not a zero
divisor in k[x1, x2, ..., xl]/I(C)∗. Combining this with Lemma 2.3 and Lemma 4,
grm(k[[tn1 , tn2 , ..., tnl ]]) is Cohen-Macaulay ⇔ I(C)∗ : x1 = I(C)∗ ⇔ in(I(C)∗) :
x1 = in(I(C)∗) with respect to the reverse lexicographic order that makes x1 the
lowest variable. From the definition of a minimal Gröbner basis,

in(I(C)∗) = (in(g1), ..., in(gs)) and in(gi) 6 | in(gj) if i 6= j.

Thus, grm(k[[tn1 , tn2 , ..., tnl ]]) is Cohen-Macaulay if and only if x1 does not divide
in(gi) for 1 ≤ i ≤ s.

3. A family of monomial curves in 4-space

which have CM tangent cones

In this section, we check the Cohen-Macaulayness of the tangent cone of the
monomial curves Cm having the parameterization

x1 = tm(m+1), x2 = tm(m+1)+1, x3 = t(m+1)2
, x4 = t(m+1)2+1(3.1)

with m ≥ 2. Our main result is the following theorem, which we prove in the end
of this section.

Theorem 3.1. The monomial curve Cm having parameterization as in (3.1) has
Cohen-Macaulay tangent cone at the origin.

Our first aim is to give a complete description of the defining ideal I(Cm). From
our computations in Macaulay [2] with particular values for m, we formulate a set
of generators and prove that the set formulated is indeed a generator set for I(Cm)
by applying the method Bresinsky used in [3] which depends on work of Herzog on
semigroups [7].
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2246 FEZA ARSLAN

Proposition 3.2. I(Cm) is generated by G = {gi = xm−i1 xi+1
3 − xm−i+1

2 xi4 with
0 ≤ i ≤ m, fj = xj3x

m−j
4 − xj+1

1 xm−j2 with 0 ≤ j ≤ m and h = x1x4 − x2x3}.
From [7, Proposition 1.4], I(Cm) is generated by binomials F (ν, µ) of the form

F (ν, µ) = xν1
1 ...x

ν4
4 − x

µ1
1 ...xµ4

4 , ∂(F (ν, µ)) =
4∑
i=1

νini =
4∑
i=1

µini(3.2)

with νi or µi = 0, 1 ≤ i ≤ l, and n1 = m(m + 1), n2 = m(m + 1) + 1, n3 =
(m+ 1)2, n4 = (m+ 1)2 + 1.

Thus, we can prove the lemma by showing that, for all F (ν, µ), there is an
element f ∈ (f0, f1, ..., fm, g0, g1, ..., gm, h) such that F (ν, µ)− f =

∏4
i=1 x

ai
i g with

g = 0 or g = F (ν′, µ′) with ∂(F (ν′, µ′)) < ∂(F (ν, µ)), since this proves that any
binomial F (ν, µ) can be generated by {f0, f1, ..., fm, g0, g1, ..., gm, h}.

Thus, the following lemma is crucial for our purpose, since it determines the
polynomials xνi1i1 −x

νi2
i2
x
νi3
i3
x
νi4
i4

in I(Cm) with 1 ≤ i1, i2, i3, i4 ≤ 4 and νi1 minimal.

Lemma 3.3. Let n1 = m(m+1), n2 = m(m+1)+1, n3 = (m+1)2, n4 = (m+1)2+1
with m ≥ 2. If νi1ni1 ∈ 〈ni2 , ni3 , ni4〉, with 1 ≤ i1, i2, i3, i4 ≤ 4 (all ik’s are
distinct), νi1 strictly positive and minimal, then ν1 = m+ 1, ν2 = m+ 1, ν3 = m,
ν4 = m.

Proof. For i1 = 1, we have the equation

ν1m(m+ 1) = µ2(m(m+ 1) + 1) + µ3(m+ 1)2 + µ4((m+ 1)2 + 1)(3.3)

and m + 1 | µ2 + µ4 follows immediately. Thus, if either µ2 or µ4 6= 0, then
µ2+µ4 ≥ m+1. Also, from (3.3), ν1 > µ2+µ3+µ4 and substituting µ2+µ4 ≥ m+1
in this inequality, we obtain ν1 > m+1. If µ2 = µ4 = 0, then µ3 = m and ν1 = m+1.
Thus, the minimal positive value for ν1 is m+ 1.

For i1 = 2, we have the equation

ν2(m(m+ 1) + 1) = µ1m(m+ 1) + µ3(m+ 1)2 + µ4((m+ 1)2 + 1),(3.4)

from which µ4 and m + 1 | ν2 − µ4 follow. Thus, ν2 ≥ m + 1. Since ν2 = m + 1,
µ1 = m, µ3 = 1 and µ4 = 0 satisfy the equation (3.4), the minimal positive value
for ν2 is m+ 1.

For i1 = 3, we have the equation

ν3(m+ 1)2 = µ1m(m+ 1) + µ2(m(m+ 1) + 1) + µ4((m+ 1)2 + 1)(3.5)

and m+1 | µ2+µ4 follows immediately. If either µ2 or µ4 6= 0, then µ2+µ4 ≥ m+1.
Thus,

ν3(m+ 1)2 ≥ µ2(m(m+ 1) + 1) + µ4((m+ 1)2 + 1),
ν3(m+ 1)2 ≥ (µ2 + µ4)(m(m+ 1) + 1),
ν3(m+ 1)2 ≥ (m+ 1)(m(m+ 1) + 1),

from which we obtain ν3 > m. If µ2 = µ4 = 0, then ν3 = m and µ1 = m+ 1. Thus,
the minimal positive value for ν3 is m.

For i1 = 4, we have the equation

ν4((m+ 1)2 + 1) = µ1m(m+ 1) + µ2(m(m+ 1) + 1) + µ3(m+ 1)2.(3.6)

If ν4 > µ2, thenm+1 | ν4−µ2 and ν4 ≥ m+1. If ν4 = µ2, then ν4 = µ1m+µ3(m+1)
and ν4 ≥ m. Otherwise, if ν4 < µ2, then by substituting µ2 = ν4 + i with i > 0, we
have
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COHEN-MACAULAYNESS OF TANGENT CONES 2247

ν4(m+ 1) = µ1m(m+ 1) + i(m(m+ 1) + 1) + µ3(m+ 1)2

and ν4 > m. Since ν4 = m, µ1 = 1, µ2 = m and µ3 = 0 satisfy the equation (3.6),
the minimal positive value for ν4 is m.

Observing that Lemma 3.3 gives the polynomials g0, f0 and fm in G, we can now
prove Proposition 3.2.

Proof of Proposition 3.2. For any F (ν, µ), if ν4 = µ4 = 0, then F (ν, µ) ∈ I(Cm) ∩
k[x1, x2, x3]. Since 〈m(m + 1),m(m + 1) + 1, (m + 1)2〉 is symmetric, I(Cm) ∩
k[x1, x2, x3] = (g0, fm) ⊂ (f0, f1, ..., fm, g0, g1, ..., gm, h) from [7]. Thus, let us con-
sider the binomials F (ν, µ) with ν4 6= 0:

1. If exactly one νi = 0: i) ν1 = 0; then f = x
µ1−(m+1)
1 fm, ii) ν2 = 0; then

f = x
µ2−(m+1)
2 g0, iii) ν3 = 0; then f = −xµ3−m

3 fm.
2. ν1 = ν2 = ν3 = 0; then ν4 ≥ m, i) µ1 = µ2 = 0; then µ3 ≥ m and
f = xν4−m

4 f0 − xµ3−m
3 fm, ii) µ1 or µ2 6= 0; then f = xν4−m

4 f0.
3. i) ν2 = ν3 = 0, ν1 6= 0; then f = xν1−1

1 xν4−1
4 h.

ii) ν1 = ν2 = 0, ν3 6= 0: If µ1 = 0, then f = x
µ2−(m+1)
2 g0. Otherwise, if

ν4 ≥ m, we have f = xν3
3 x

ν4−m
4 f0, and if ν3 ≥ m, we have f = xν3−m

3 xν4
4 fm.

The only remaining case is ν4, ν3 < m. Assume that ν4 < µ2. With this
assumption, the equation

ν3(m+ 1)2 + ν4((m+ 1)2 + 1) = µ1m(m+ 1) + µ2(m(m+ 1) + 1)(3.7)

gives µ2 = ν4 + k(m+ 1) where k ≥ 1. Substituting this in the equation (3.7)
and simplifying, we obtain

ν3(m+ 1) + ν4 = µ1m+ k(m(m+ 1) + 1).(3.8)

But this equation gives

ν3 + ν4 = µ1m+ k(m(m+ 1) + 1)− ν3m

> m+ (m(m+ 1) + 1)− (m− 1)m > 2m− 2

which is a contradiction since ν3, ν4 < m. Thus, ν4 ≥ µ2. From equation
(3.7), (m + 1) | ν4 − µ2 so that ν4 = µ2. Substituting ν4 = µ2 in equation
(3.7), we obtain

µ1m− ν3m = ν3 + ν4

which gives m | ν3 + ν4. Thus, f = fj for some j with 1 ≤ j ≤ m− 1.
iii) ν1 = ν3 = 0, ν2 6= 0 a) If ν4 ≥ m, then there are two cases: If µ1 6= 0,

f = xν4−m
4 xν2

2 f0. If µ1 = 0, then µ3 ≥ m and f = −xν3−(m+1)
3 (x3fm + x1g0).

b) If ν2 ≥ m+ 1, then f = −xν4
4 x

ν2−(m+1)
2 g0. c) If ν4 < m, ν2 < m+ 1, then

from the equation
ν2((m+ 1)m+ 1) + ν4((m+ 1)2 + 1) = ν1m(m+ 1) + ν3(m+ 1)2

m+1 | ν2+ν4 and ν2+ν4 = m+1. Thus, f = gi for some i with 1 ≤ i ≤ m−1.

Knowing the description of the ideal I(Cm), it is possible to compute a set of
generators of I(Cm)∗ by using the following algorithm. (The standard reference
for material used related to Gröbner theory is [5].) We first find a generator set
of I(Cm)h ⊂ k[t, x1, x2, x3, x4] which is the homogenization of I(Cm). It can be
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found by homogenizing the elements of a Gröbner basis of I(Cm) with respect to
any graded monomial order by using the homogenization variable t. From the
obtained generator set of I(Cm)h, another Gröbner basis G1, ..., Gs is computed
with respect to a monomial order, such that among monomials of the same total
degree, any monomial involving t is greater than any monomial involving only
x1, ..., x4. Then I(Cm)∗ is generated by the homogeneous summands of the least
degree of G1(1, x1, .., x4), ..., Gs(1, x1, ..., x4).

Proposition 3.4. I(Cm)∗ is generated by G∗ = {gi = xm−i1 xi+1
3 − xm−i+1

2 xi4 with
0 ≤ i ≤ m− 1, f ′j = xj3x

m−j
4 with 0 ≤ j ≤ m, h = x1x4 − x2x3}.

The proof is a direct application of the tangent cone algorithm with the following
lemmas.

Lemma 3.5. G = {gi = xm−i1 xi+1
3 − xm−i+1

2 xi4 with 0 ≤ i ≤ m, fj = xj3x
m−j
4 −

xj+1
1 xm−j2 with 0 ≤ j ≤ m, h = x1x4− x2x3} is a Gröbner basis with respect to the

graded lexicographic order with x4 > x2 > x3 > x1.

Proof. For i < j,

S(gi, gj) = xj−i4 xi+1
3 xm−i1 − xj−i2 xm−j1 xj+1

3

= xm−j1 xi+1
3 (xj−i1 xj−i4 − xj−i2 xj−i3 ) = (x4x1 − x2x3)p1

which shows that S(gi, gj) →G 0. S(gi, h) = xm−i+1
1 xi+1

3 − xm−i+2
2 xi−1

4 x3 =
x3gi−1, so that S(gi, h) →G 0. Also, S(fi, fj) = xj−i1 xi3x

m−i
4 − xj−i2 xj3x

m−j
4 =

xi3x
m−j
4 (xj−i1 xj−i4 − xj−i2 xj−i3 ) = (x4x1− x2x3)p2. Thus, S(fi, fj)→G 0. S(fi, h) =

xi3x
m−i+1
4 − xm−i+1

2 xi1x3 = x3fi−1, and S(fi, h) →G 0. For i < j, S(fi, gj) =
xi+1

3 xj−i1 fm − xj3gm−j+i which shows that S(fi, gj) →G 0, and the case i ≥ j is
similar.

This lemma gives us the opportunity to obtain I(Cm)h by homogenizing the
generators of G so that I(Cm)h is generated by
Gh = {gi = xm−i1 xi+1

3 − xm−i+1
2 xi4, 0 ≤ i ≤ m, fhj = txj3x

m−j
4 − xj+1

1 xm−j2 0 ≤ j ≤
m, h = x1x4 − x2x3}.

Lemma 3.6. Gh is a Gröbner basis with respect to the lexicographic order with
t > x4 > x2 > x3 > x1.

Proof. S(gi, gj), S(gi, h) and S(fhi , f
h
j ) = S(fi, fj) →Gh 0 from Lemma 3.5.

S(fhi , gj) = xm−j1 xi+j+1−m
3 fhm+xi+1

1 gi+j−m for j ≥ m−i. For j < m−i, S(fhi , gj) =
xi+1

1 xm−i−j2 g0 + xi+1
1 x3f

h
i+j . Thus, S(fhi , gj)→Gh 0. For i 6= m, S(fhi , h) = x2f

h
i+1

and S(fhi , h)→Gh 0, while S(fhm, h)→Gh 0, since gcd(in(fhm), in(h)) = 1.

Proof of Proposition 3.4. According to the tangent cone algorithm, we must com-
pute a Gröbner basis from Gh with respect to a monomial order, such that among
monomials of the same total degree, any monomial involving t is greater than any
monomial involving only x1, ..., x4, which is done in Lemma 3.6. Again from the
tangent cone algorithm, I(Cm)∗ is generated by {gi = xm−i1 xi+1

3 − xm−i+1
2 xi4 with

0 ≤ i ≤ m, f ′j = xj3x
m−j
4 with 0 ≤ j ≤ m, h = x1x4 − x2x3}. Since gm can be

generated by f ′0 and f ′m, we can give a minimal generator set G∗ for I(Cm)∗ such
that G∗ = {gi = xm−i1 xi+1

3 − xm−i+1
2 xi4 0 ≤ i ≤ m − 1, f ′j = xj3x

m−j
4 0 ≤ j ≤ m,

h = x1x4 − x2x3}.
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We can now prove Theorem 3.1.

Proof of Theorem 3.1. I(Cm)∗ is generated by G∗ which is also a minimal Gröbner
basis with respect to the reverse lexicographic order with x4 > x2 > x3 > x1

(S(f ′i , f
′
j) = 0, S(f ′j , h)→G∗ 0, S(gi, h)→G∗ 0, S(gi, gj)→G∗ 0 and S(f ′i , gj)→G∗

0). We can now apply Theorem 2.1. Since x1 does not divide in(gi) = xm−i+1
2 xi4 1 ≤

i ≤ m, in(f ′j) = xj3x
m−j
4 0 ≤ j ≤ m and in(h) = x2x3, k[x1, x2, x3, x4]/I(Cm)∗ is

Cohen-Macaulay.

Theorem 3.1 shows that the monomial curve Cm, for which µ(I(Cm)∗) = 2m+2
has Cohen-Macaulay tangent cone. Thus, there are monomial curves with arbitrary
large minimal number of generators of I(Cm)∗ and Cohen-Macaulay tangent cones.

Remark 3.7. It is now trivial to compute the Hilbert series of the associated graded
ring of the family of curves Cm. Since G = k[x1, x2, x3, x4]/I(Cm)∗ is Cohen-
Macaulay, G and its Artinian reduction G/(x1) have the same h-polynomial. A
direct computation shows that the Hilbert series Hm(t) of the associated graded
ring of the monomial curve Cm is given by

Hm(t) =
∑m−1

i=0 (2i+ 1)ti +mtm

1− t .(3.9)

Remark 3.8. (a) By the same approach, the monomial curves Cn having the pa-
rameterization

x1 = tn(n+1)+1, x2 = tn(n+1)+2, x3 = t(n+1)2+1, x4 = t(n+1)2+2(3.10)

with n ≥ 3 can be shown to have Cohen-Macaulay tangent cones and µ(I(Cn)∗) =
2n+ 3.

(b) By a similar approach, Bresinsky curves [3] Cq2 (which he used for proving
that the defining ideal of the monomial curves in affine l-space for l ≥ 4 may have
an arbitrary minimal number of generators) having the parameterization

x1 = tq1q2 , x2 = tq1d1 , x3 = tq1q2+d1 , x4 = tq2d1(3.11)

with q1 = q2 + 1, q2 even, q2 ≥ 4, d1 = q2 − 1 can also be shown to have Cohen-
Macaulay tangent cones. The approach depends on checking that x4 is not a zero
divisor in the associated graded ring by considering the generators F (ν, µ), since
the homogeneous summands of the least degree of F (ν, µ)’s generate the I(Cq2 )∗.

4. Extension to higher dimension

Consider the curves C [5]
m in 5-space having parameterization,

x1 = t2m(m+1), x2 = t2m(m+1)+2, x3 = t2(m+1)2
, x4 = t2(m+1)2+2 x5 = t2(m+1)2+1.

(4.1)

Proposition 4.1. I(C [5]
m ) is generated by G[5]

m = {gi = xm−i1 xi+1
3 − xm−i+1

2 xi4 with
0 ≤ i ≤ m, fj = xj3x

m−j
4 −xj+1

1 xm−j2 with 0 ≤ j ≤ m, h = x1x4−x2x3, x2
5−x4x3}.

To prove this proposition, we first recall the following lemma of Morales:

Lemma 4.2 ([9, Lemma 3.2]). Let C be a curve having parameterization

x1 = ϕ1(t), ..., xl−1 = ϕl−1(t), xl = ta.(4.2)
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Let β be a positive integer such that gcd(a, β) = 1, and let C̃ be a curve having
parameterization

x1 = ϕ1(tβ), ..., xl−1 = ϕl−1(tβ), xl = ta.(4.3)

For any f(x1, ..., xl) ∈ k[x1, ..., xl], we denote by f̃ the element f(x1, . . . , xl−1, x
β
l ).

Then if f1, ..., fs is a set of generators for I(C), then f̃1, ..., f̃s is a set of generators
for I(C̃).

Proof of Proposition 4.1. Consider the curve C′,

x1 = tm(m+1), x2 = tm(m+1)+1, x3 = t(m+1)2
, x4 = t(m+1)2+1, x5 = t2(m+1)2+1

(4.4)

where x5 = x3x4. Let f ∈ I(C′); then

f(x1, x2, x3, x4, x5) = f(x1, x2, x3, x4, x5 − x3x4 + x3x4)
= (x5 − x3x4)f1(x1, x2, x3, x4, x5) + f2(x1, x2, x3, x4) = 0

for x1 = tm(m+1), x2 = tm(m+1)+1, x3 = t(m+1)2
, x4 = t(m+1)2+1, x5 = t2(m+1)2+1,

which shows that f2(tm(m+1), tm(m+1)+1, t(m+1)2
, t(m+1)2+1) = 0, that is, f2 ∈

I(Cm). Thus, I(C′) is generated by the generator set G ∪ {x5 − x3x4}, where
G is the generator set in Proposition 3.2.

Applying Lemma 4.2 with C = C′ in (4.4), C̃ = C
[5]
m in (4.1) and β = 2, I(C[5]

m )
is generated by G[5]

m = G ∪ {x2
5 − x3x4}.

The generator basis G[5]
m is a Gröbner basis with respect to the graded lexico-

graphic order with x5 > x4 > x2 > x3 > x1, because G′ = G ∪ {x2
5 − x3x4},

G is a Gröbner basis with respect to the graded lexicographic order with x4 >
x2 > x3 > x1 and the greatest common divisor of leading monomial of any ele-
ment in G and x2

5 is 1. Also, by the same approach the homogenization of the
elements of G[5]

m by t is a Gröbner basis with respect to the lexicographic order with
t > x5 > x4 > x2 > x3 > x1. Thus, we obtain the tangent cone as in Section 4,
and conclude that C [5]

m is a monomial curve with µ(I(C[5]
m )∗) = 2m+ 3 and has a

Cohen-Macaulay tangent cone. It is obvious that, with the same method, we can
extend the result to all higher dimensions, such that if C[l]

m has the parameterization

x1 = ta1 , ... xl−1 = tal−1 , xl = tal ,(4.5)

then C
[l+1]
m is given by

x1 = t2a1 , ... xl−1 = t2al−1 , xl = t2al , xl+1 = tal−1+al .(4.6)

Remark 4.3. In an affine l-space with l > 4, I(C [l]
m ) is generated by

G
[l]
m = {gi = xm−i1 xi+1

3 − xm−i+1
2 xi4 with 0 ≤ i ≤ m, fj = xj3x

m−j
4 − xj+1

1 xm−j2 with
0 ≤ j ≤ m, h = x1x4 − x2x3, x2

5 − x4x3, ..., x
2
l − xl−1xl−2}

and I(C [l]
m )∗ is generated by

G
[l]
m∗ = {gi = xm−i1 xi+1

3 − xm−i+1
2 xi4 with 0 ≤ i ≤ m− 1, f ′j = xj3x

m−j
4 with

0 ≤ j ≤ m, h = x1x4 − x2x3, x2
5 − x4x3, ..., x

2
l − xl−1xl−2},

which is also a minimal Gröbner basis with respect to the reverse lexicographic
order with xl > xl−1 > ... > x5 > x4 > x2 > x3 > x1 from the construction.
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Thus from Theorem 2.1, C[l]
m has Cohen-Macaulay tangent cone at the origin. Also,

µ(I(C [l]
m )∗) = 2m+ l − 2.

Remark 4.4. We can compute the Hilbert series of G = k[x1, ..., xl]/I(C [l]
m )∗. Since

G
[l]
m∗ is a Gröbner basis with respect to the reverse lexicographic order with xl >

xl−1 > ... > x5 > x4 > x2 > x3 > x1, k[x1, ..., xl]/I(C [l]
m )∗ and k[x1, ..., xl]/in(G[l]

m∗)
have the same Hilbert series, where in(G[l]

m∗) is the ideal generated by the leading
terms of the elements of the generator set G[l]

m∗ with respect to this order. By using
[1, Proposition 2.4] and Remark 3.7, the Hilbert series H [l]

m (t) of the associated
graded ring of the monomial curve C [l]

m for l ≥ 4 is given by

H [l]
m (t) =

(1 + t)l−2(
∑m−1

i=0 (2i+ 1)ti +mtm)
1− t .(4.7)

As a result, in every affine l-space with l ≥ 4, there are monomial curves having
Cohen-Macaulay tangent cone with arbitrarily large minimal number of generators.
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