

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW c© 2007 Society for Industrial and Applied Mathematics
Vol. 49, No. 4, pp. 595–603

Revisiting Hypergraph Models
for Sparse Matrix Partitioning∗

Bora Uçar†

Cevdet Aykanat‡

Abstract. We provide an exposition of hypergraph models for parallelizing sparse matrix-vector mul-
tiplies. Our aim is to emphasize the expressive power of hypergraph models. First, we set
forth an elementary hypergraph model for the parallel matrix-vector multiply based on
one-dimensional (1D) matrix partitioning. In the elementary model, the vertices represent
the data of a matrix-vector multiply, and the nets encode dependencies among the data.
We then apply a recently proposed hypergraph transformation operation to devise models
for 1D sparse matrix partitioning. The resulting 1D partitioning models are equivalent to
the previously proposed computational hypergraph models and are not meant to be re-
placements for them. Nevertheless, the new models give us insights into the previous ones
and help us explain a subtle requirement, known as the consistency condition, of hyper-
graph partitioning models. Later, we demonstrate the flexibility of the elementary model
on a few 1D partitioning problems that are hard to solve using the previously proposed
models. We also discuss extensions of the proposed elementary model to two-dimensional
matrix partitioning.

Key words. parallel computing, sparse matrix-vector multiply, hypergraph models

AMS subject classifications. 05C50, 05C65, 65F10, 65F50, 65Y05

DOI. 10.1137/060662459

1. Introduction. Hypergraph–partitioning-based models for parallel sparse ma-
trix-vector multiply operations [3, 4, 9] have gained widespread acceptance. These
models can address partitionings of rectangular, unsymmetric square, and symmetric
square matrices. However, the expressive power of these models was only acknowl-
edged long after their introduction [1, 7, 11]. There may be three main reasons for
this. First, the works [3, 9] had limited distribution, and therefore the models were
more widely introduced in [4]. Second, rectangular matrices were not discussed ex-
plicitly in [4]. Third, perhaps most probably, the paper [4] focused on obtaining the
same partitions on the input and output vectors of the multiply operation. This parti-
tioning scheme evokes square matrices, as the lengths of the input and output vectors
have to be the same.

In order to parallelize the matrix-vector multiply y ← Ax, we have to partition the
vectors x and y along with the matrix A among the processors of a parallel computer.

∗Received by the editors June 8, 2006; accepted for publication (in revised form) November 7,
2006; published electronically November 1, 2007. This work was partially supported by the Scientific
and Technological Research Council of Turkey (TÜBİTAK) under grant 106E069.

http://www.siam.org/journals/sirev/49-4/66245.html
†Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(ubora@mathcs.emory.edu). The work of this author is partially supported by the Scientific and
Technological Research Council of Turkey (TÜBİTAK) under program 2219 and by the University
Research Committee of Emory University.
‡Computer Engineering Department, Bilkent University, Ankara, 06800, Turkey (aykanat@cs.

bilkent.edu.tr).
595

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

596 BORA UÇAR AND CEVDET AYKANAT

There are two alternatives in partitioning the vectors x and y. The first, symmetric
partitioning, is to have the same partition on x and y. The second, unsymmetric
partitioning, is to have different partitions on x and y. Usually, if the matrix is
partitioned rowwise, the partition on y conforms to the partition on the rows of A.
Similarly, if the matrix is partitioned columnwise, the partition on x conforms to the
partition on the columns of A.

In section 3, we present an elementary hypergraph model for parallel matrix-
vector multiply based on one-dimensional (1D) matrix partitioning. The model rep-
resents all the operands of the matrix-vector multiply y ← Ax with vertices. There-
fore, partitioning the proposed hypergraph model amounts to partitioning the input
vector x, the output vector y, and the matrix A simultaneously. We show that the
proposed elementary model can be transformed into hypergraph models for obtaining
unsymmetric and symmetric partitionings. The resulting models are equivalent to
the previously proposed computational hypergraphs in modeling the total volume of
communication correctly. If symmetric partitioning is sought, the resulting model
becomes structurally equivalent to the previously proposed models [4].

Although the elementary model contributes only little to the standard 1D matrix
partitioning, it is useful in general. In section 4, we show how to transform the
elementary model to address a few partitioning problems that are hard to tackle using
the previous models. In most of the paper, we confine the discussion to the rowwise
partitioning models, because the columnwise partitioning models can be addressed
similarly.

2. Background. A hypergraph H = (V,N) is defined as a set of vertices V and
a set of nets N . Every net is a subset of vertices. The size of a net ni is equal to the
number of its vertices, i.e., |ni|. The set of nets that contain vertex vj is denoted by
Nets(vj). Weights can be associated with vertices. We use w(j) to denote the weight
of the vertex vj .

Π = {V1, . . . ,VK} is a K-way vertex partition of H = (V,N) if each part is
nonempty, parts are pairwise disjoint, and the union of parts gives V. In Π, a net is
said to connect a part if it has at least one vertex in that part. The connectivity set
Λ(i) of a net ni is the set of parts connected by ni. The connectivity λ(i)= |Λ(i)| of a
net ni is the number of parts connected by ni. In Π, the weight of a part is the sum
of the weights of vertices in that part.

In the hypergraph partitioning problem, the objective is to minimize

cutsize(Π) =
∑

ni∈N
(λ(i)− 1) .(2.1)

This objective function is widely used in the VLSI community [8] and in the scientific
computing community [1, 4, 11], and it is referred to as the connectivity-1 cutsize
metric. The partitioning constraint is to satisfy a balancing constraint on part weights:

Wmax −Wavg

Wavg
≤ ε .(2.2)

Here Wmax is the largest part weight, Wavg is the average part weight, and ε is a
predetermined imbalance ratio. This problem is NP-hard [8].

In the previously proposed hypergraph–partitioning-based methods (e.g., [4, 6,
13]), vertices of a hypergraph are used to represent the matrix data (e.g., rows,
columns, or nonzeros). Therefore, partitioning the vertices of a hypergraph into K

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVISITING HYPERGRAPH MODELS 597

parts amounts to partitioning a matrix among K processors. Usually, the processor
Pk is set to be the owner of the data corresponding to the vertices in Vk.

Since the aforementioned approaches do not represent the vector entries with the
vertices, they leave the vector partitioning unsolved. Vector partitioning is either
done implicitly using the partitions on the matrix for symmetric partitioning [4, 6],
or it is done in an additional stage after partitioning the matrix, for unsymmet-
ric [2, 10, 11, 13] and symmetric [10, 13] partitionings. In these models, there is a
condition, known as the consistency condition [4], on the exact correspondence be-
tween the total communication volume and the hypergraph partitioning objective.
The consistency condition necessitates the assignment of a vector entry to a processor
that has at least one nonzero in the corresponding row or column of the matrix. In
other words, since the vector entries are associated with the nets [4, 6], the consistency
condition necessitates the assignment of the vector entry associated with a net ni to a
processor corresponding to a part in Λ(i). In the unsymmetric partitioning case, the
consistency condition is easily satisfied since the input and output vectors are parti-
tioned independently. In the symmetric partitioning case, the consistency condition
is usually satisfied by modifying the sparsity pattern of the matrix to have a zero-free
diagonal [4, 6, 13] and then applying hypergraph partitioning to the modified matrix.
Designating the owner of a diagonal nonzero as the owner of the corresponding en-
tries in the input and output vectors satisfies the consistency condition in the implicit
vector partitioning techniques [4, 6]. This scheme also forms a possible solution in
the explicit vector partitioning techniques [2, 13].

We make use of the recently proposed vertex amalgamation operation [12]. This
operation combines two vertices into a single composite vertex. The net set of the
resulting composite vertex is set to the union of the nets of the constituent vertices;
i.e., amalgamating vertices vi and vj removes these two vertices from the hypergraph,
adds a new vertex 〈vi, vj〉, and sets Nets(〈vi, vj〉) = Nets(vi) ∪Nets(vj).

3. Revisiting Hypergraph Models for 1D Partitioning. Consider computations
of the form y ← Ax under rowwise partitioning of the m × n matrix A. Since we
partition the rows of A and the entries of the input and output vectors x and y, there
should be three types of vertices in a hypergraph: row-vertices, x-vertices, and y-
vertices. The nets of the hypergraph should be defined to represent the dependencies
of the y-vertices on the row-vertices, and the dependencies of the row-vertices on the
x-vertices. We define the elementary hypergraph H = (V,N) with |V| = 2m + n
vertices and |N | = m + n nets. The vertex set V = X ∪ Y ∪ R contains the vertices
X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and R = {r1, . . . , rm}. Here xj corresponds to
the jth entry in the input vector, yi corresponds to the ith entry in the output vector,
and ri corresponds to the ith row of A. The net set N = Nx ∪ Ny contains the nets
Nx = {nx(j) : j = 1, . . . , n}, where nx(j) = {ri : i = 1, . . . ,m and aij �= 0} ∪ {xj},
and the nets Ny = {ny(i) : i = 1, . . . ,m}, where ny(i) = {yi, ri}. Each row-vertex ri
is associated with a weight to represent the computational load associated with the
ith row, e.g., wr(i) = |Nets(ri)| − 1. Note that the weight wr(i) corresponds to the
number of nonzeros in the ith row of A as in [4]. Weights can be associated with the
x- and y-vertices. For example, a unit weight may be assigned to these vertices in
order to maintain balance in linear vector operations.

Observe that in the above construction, each net contains a unique vertex that
corresponds to either an input vector entry or an output vector entry, i.e., xi or
yi. This construction abides by the guidelines given in [4] and outlined in [7]. The
elementary hypergraph model is the most general model for 1D rowwise partitioning,

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

598 BORA UÇAR AND CEVDET AYKANAT

4

1

2

3

5

6

41 2 3 5 6

Ay

x

r1

r2

r3

r4

r5

r6

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

x5

x6
(ny)6

(n)5y

(ny)4

(ny)3

(ny)2

(ny)1

(nx)4

(nx)3

(nx)2

(nx)1

(n)5x

(nx)6

(a) (b)

(ny)

y
r

(nx)
x

(nx)
x

(nx)
x

5
5

4

5

6

5

5

4

6

5

r
xy

r
xy5 5

(nx)

(nx)

(nx)

4 4
4

r
xy6

5

4

6
6

6

(c) (d)

Fig. 3.1 (a) The operands of a matrix-vector multiply operation with a 6 × 6 matrix A and 6 × 1
vectors x and y. (b) The elementary hypergraph model for 1D partitioning—all operands
of the matrix-vector multiply operation are represented by vertices. (c) A portion of the 1D
unsymmetric partitioning model—obtained by applying the vertex amalgamation operation
to y5 and r5 to enforce the owner-computes rule. (d) A portion of the 1D symmetric par-
titioning model—obtained by applying the vertex amalgamation operation to the composite
vertex 〈y5, r5〉 and the vertex x5.

because by partitioning the vertices of this hypergraph we can obtain partitions on
all operands of a matrix-vector multiply operation.

Figure 3.1(a) and (b) show the data associated with a sample matrix-vector mul-
tiply operation and the corresponding elementary hypergraph. In the figure, row 5
has two nonzeros: one in column 4 and another in column 6. Hence, the row vertex
r5 is connected to the nets ny(5), nx(4), and nx(6).

We show how to modify the elementary hypergraph by applying the vertex amal-
gamation operation to devise 1D unsymmetric and symmetric partitioning models.
First, we can apply the owner-computes rule, i.e., yi should be computed by the
processor that owns ri. This requires amalgamating the vertices yi and ri for all i.
Figure 3.1(c) shows the amalgamation operation applied to the vertices y5 and r5 of
the elementary hypergraph given in Figure 3.1(b). Note that after this amalgama-
tion, the size of the net ny(i) for all i becomes one. Since the nets of size one do not
contribute to the cutsize, we can delete the nets ny(i) for all i from the model. Par-

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVISITING HYPERGRAPH MODELS 599

titioning the resulting hypergraph will produce unsymmetric partitions, as the vector
entries xi and yi might be assigned to different processors.

Suppose we are seeking symmetric partitions; the processor which owns yi and ri
should own xi. This time, we have to amalgamate the vertices 〈yi, ri〉 and xi for all i.
Figure 3.1(d) shows the amalgamation operation applied to vertices 〈y5, r5〉 and x5 of
the model given in Figure 3.1(c). Partitioning the resulting hypergraph will produce
symmetric partitions. Note that the hypergraph obtained after these amalgamation
operations is structurally equivalent to the column-net hypergraph model proposed
in [4] under the zero-free diagonal assumption. However, there is a difference in the
semantics. The x-vector entries are represented by the vertices in this work, whereas
they are represented by the nets in [4]. Note that this association guarantees vi ∈ ni
for all i independent of the sparsity pattern of the matrix. This justifies enforcing
zero-free diagonals in the symmetric partitioning models proposed in [4].

Assume we have partitioned the data of y ← Ax among K processors by par-
titioning the unsymmetric or symmetric partitioning models into K parts. In both
cases, if the vertex associated with xj is in Vk, e.g., xj ∈ Vk or 〈xj , yj , rj〉 ∈ Vk,
then the processor Pk will send xj to the processors corresponding to the parts in
the connectivity set Λx(j) of nx(j). In other words, the cutsize accurately represents
the total communication volume without any condition. This is true even if the pro-
cessor that holds xj has no nonzeros in column j of the matrix. Consider a 6-way
partitioning of the hypergraph model for unsymmetric partitioning of the data given
in Figure 3.1(a) in which processor Pi, for i = 1, . . . , 6, gets the composite vertex
〈yi, ri〉 and the x-vertex xi. Now, observe that P5 has no nonzeros in column 5 and
the communication volume regarding x5 is λx(5)− 1 = 3− 1 = 2.

4. Examples. We cast three partitioning problems that are hard to solve using
the previous models. Each problem asks for a distinct hypergraph model whose cut-
size under a partition corresponds to the total volume of communication in parallel
computations with a proper algorithm. As usual, we assume that there are K pro-
cessors, and the data associated with each part of the K-way vertex partition are
assigned to a distinct processor.

Problem 1. Describe a hypergraph model which can be used to partition the ma-
trix A rowwise for the y ← Ax computations under given, possibly different, partitions
on the input and output vectors x and y.

A parallel algorithm that carries out the y ← Ax computations under given
partitions of x and y should have a communication phase on x, a computation phase,
and a communication phase on y. We take the elementary hypergraph model given
in section 3 and then designate each xj and yi as fixed to a part according to the given
partitions on the vectors x and y. Invoking a hypergraph partitioning tool which can
handle the fixed vertices (e.g., PaToH [5]) will solve the partitioning problem stated
above. For each nx(j), the connectivity-1 value, i.e., λx(j)−1, corresponds to the total
volume of communication regarding xj . Similarly, for each ny(i), λy(i)−1 corresponds
to the volume of communication regarding yi; note that λy(i) − 1 is either 0 (ri is
assigned to the part to which yi is fixed) or 1 (otherwise).

Problem 2. Describe a hypergraph model to obtain the same partition on the
input and output vectors x and y that is different than the partition on the rows of A
for the y ← Ax computations.

The y ← Ax computations should be carried out by the parallel algorithm given
for Problem 1. We take the elementary hypergraph model given in section 3 (see
Figure 4.1(a)) and then amalgamate the vertices xi and yi into a single vertex. A

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

600 BORA UÇAR AND CEVDET AYKANAT

iy ir

xj

xi

xk

i(ny)

k(nx)

i(nx)

j(nx)

ir

xj

xk
k(nx)

j(nx)

iy
xi

i(ny)

i(nx)

(a) (b)

Fig. 4.1 (a) Portion of the elementary hypergraph model for y ← Ax with a hypothetical matrix A.
The ith row of A is assumed to have two nonzeros: one in column j and another in column
k. (b) Hypergraph model for the partitioning problem 2.

portion of the resulting hypergraph is shown in Figure 4.1(b). Here, the connectivity-
1 values of the nets again correspond to the volume of communication regarding the
associated x- and y-vector entries. The communications on xi are still represented by
the net nx(i), and the communications on yi are still represented by the net ny(i).
Observe that a composite vertex 〈xi, yi〉 can be in the same part as ri, in which case
there is no communication on yi and λy(i)− 1 = 0.

Problem 3. Describe a hypergraph model to obtain different partitions on x and
on the rows of A, where y is partitioned conformably with the rows of A under the
owner-computes rule for computations of the form y ← Ax followed by x← x+ y.

We start with the elementary hypergraph model for y ← Ax given in section 3
(see Figure 4.2(a)). The xi + yi addition operations introduce new vertices for all i.
The vertex xi + yi depends on the vertices xi and yi. Therefore, it is connected to
the nets nx(i) and ny(i). Furthermore, since xi is dependent on the vertex xi + yi
due to the computation xi ← xi + yi, we create a new net nx+y(i) and connect
xi to nx+y(i). A portion of the hypergraph with the new vertices representing the
xi ← xi + yi computations and the new nets encoding the dependencies inherent in
those computations is shown in Figure 4.2(b). First, we enforce the owner-computes
rule for the xi ← xi + yi computations. This can be achieved by amalgamating the
vertices xi and xi+yi. Since the size of the net nx+y(i) becomes one, it can be excluded
safely. The resulting model is shown in Figure 4.2(c). Next, we enforce the owner-
computes rule for yi by amalgamating vertices yi and ri (Figure 4.2(d)). In order to
carry out the xi ← xi + yi computations, the yi values should be communicated after
computing y ← Ax. Here, if the composite vertex 〈xi, xi+yi〉 and the composite vertex
〈yi, ri〉 reside in different processors, then we have to send yi. The communication
volume of this send operation is equal to λy(i)− 1 = 1. Since the nets in Nx are kept
intact, they represent the communications on the x-vector entries for the y ← Ax
computations as before.

Consider a slightly different partitioning problem in which the owner-computes
rule for the y-vector entries is not a must. The hypergraph in Figure 4.2(c) can be used
to address this partitioning problem. Here, if 〈xi, xi+yi〉, yi, and ri reside in different
processors, then we will have two units of communication: the result of the inner
product rTi ·x will be sent to the processor that holds yi, which will write yi and send
the value to the processor that holds xi. If, however, the composite vertex 〈xi, xi+yi〉
and ri reside in the same processor, we will have one unit of communication: the result

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVISITING HYPERGRAPH MODELS 601

iy ir

xj

xi

xk

i(ny)

k(nx)

i(nx)

j(nx)

iy ir

xj

xi

xk

i(ny)

j(nx)

i(nx)

k(nx)

xi iy
)(i

+
nx+y

(a) (b)

iy ir

xj

xk

i(ny)

j(nx)

i(nx)

k(nx)

xi

xi+ iy

xj

xk

iy
ir

i(ny) i(nx)

j(nx)

k(nx)

xi yi+
xi

(c) (d)

Fig. 4.2 (a) Portion of the elementary hypergraph model for y ← Ax with a hypothetical matrix A.
The ith row of A is assumed to have two nonzeros: one in column j and another in column
k. (b) Initial hypergraph model for the partitioning problem 3 obtained by incorporating new
vertices representing the xi ← xi+yi computations and new nets encoding the dependencies
inherent in those computations. (c) According to the owner-computes rule for the xi ←
xi + yi computations, the vertices xi and xi + yi are amalgamated. (d) According to the
owner-computes rule for yi, the vertices yi and ri are amalgamated.

of rTi ·x will be sent to the processor that holds yi, and the computation xi ← xi + yi
will be performed using the local data xi and yi = rTi ·x. Similarly, if 〈xi, xi + yi〉 and
yi reside in the same processor, we will have one unit of communication: the result
of rTi · x will be sent to that processor, which in turn will update yi and perform
xi ← xi + yi.

5. Discussion. We have provided an elementary hypergraph model to partition
the data of the y ← Ax computations. The model represents all operands of the
matrix-vector multiply operation as vertices. Therefore, partitioning the vertices of
this elementary model amounts to partitioning all operands of the multiply opera-
tion simultaneously. We have shown how to transform the elementary model into
hypergraph models that can be used to address various 1D partitioning problems in-
cluding the symmetric and unsymmetric partitioning problems. Although the latter
two problems are well studied, the models discussed here shed light on the previous
models.

We confined the discussion to rowwise partitioning problems for brevity. The
columnwise partitioning models can be constructed similarly. For example, the ele-
mentary model for the y ← Ax computations under columnwise partitioning of A is
given by HC = (V,N), where V = X ∪ Y ∪ C with X = {x1, . . . , xn} correspond-

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

602 BORA UÇAR AND CEVDET AYKANAT

ing to the input vector entries, Y = {y1, . . . , ym} corresponding to the output vector
entries, and C = {c1, . . . , cn} corresponding to the columns of A; N = Nx ∪ Ny
with the nets Nx = {nx(j) : j = 1, . . . , n}, where nx(j) = {xj , cj}, and the nets
Ny = {ny(i) : i = 1, . . . ,m}, where ny(i) = {cj : j = 1, . . . , n and aij �= 0} ∪ {yi}.

The basic ideas can be carried over to the fine-grain partitioning model [6]—
two-dimensional, nonzero-based—as well. The elementary model for the y ← Ax
computations under fine-grain partitioning of A is given by H2D = (V,N). The
vertex set V = X ∪ Y ∪ Z contains the vertices X = {x1, . . . , xn} corresponding to
the input vector entries, Y = {y1, . . . , ym} corresponding to the output vector entries,
and Z = {aij : 1 ≤ i ≤ m and 1 ≤ j ≤ n and aij �= 0} corresponding to the nonzeros
of A. The net set N = Nx ∪Ny contains the nets Nx = {nx(j) : j = 1, . . . , n}, where
nx(j) = {aij : 1 ≤ i ≤ m and aij �= 0} ∪ {xj}, and Ny = {ny(i) : i = 1, . . . ,m}, where
ny(i) = {aij : 1 ≤ j ≤ n and aij �= 0} ∪ {yi}. Applying the vertex amalgamation
operation to the vertices xi and yi for 1 ≤ i ≤ n (if the matrix is n×n) yields a model
whose partitioning results in symmetric partitioning.

Consider a partition of the model H2D for symmetric partitioning, e.g., after the
vertex amalgamation operations. The cutsize corresponds exactly to the total com-
munication volume, i.e., the model satisfies the consistency condition. The composite
vertex 〈xi, yi〉 is in the nets nx(i) and ny(i). Therefore, the connectivity-1 value of the
nets nx(i) and ny(i) again corresponds to the volume of communication regarding xi
and yi, respectively. That is, if the composite vertex 〈xi, yi〉 ∈ Vk, then the processor
Pk will send xi to the processors corresponding to the parts in Λx(i) and will receive
the contributions to yi from the processors corresponding to the parts in Λy(i). Since
the part Vk is also in both Λx(i) and Λy(i), the volume of communications regarding
xi and yi are λx(i) − 1 and λy(i) − 1, respectively. This model is slightly different
from the original fine-grain model [6]. In order to guarantee the consistency condition,
Çatalyürek and Aykanat [6] added a dummy vertex dii for each diagonal entry aii
that is originally zero in A. After the vertex amalgamation operation, H2D contains
n composite vertices of the form 〈xi, yi〉. If aii is zero in A, then the vertex 〈xi, yi〉
can be said to be equivalent to the dummy vertex dii. If, however, aii is nonzero in A,
then the vertex 〈xi, yi〉 can be said to be a copy of the diagonal vertex aii. Having ob-
served this discrepancy between the models, we have done experiments with a number
of matrices. We did not observe any significant difference between the performance
of the models in terms of the cutsize (total communication volume).

We should mention that the owner-computes rule should be enforced for two
reasons, unless otherwise dictated by the problem. First, it reduces the number of
vertices and possibly the number of nets, leading to a reduction in the model size and
in the running time of the partitioning algorithm. Second, it avoids a communication
phase in the parallel algorithms.

The current approach in the parallelization of a wide range of iterative solvers
is to enforce the same partition on the vectors that participate in a linear vector
operation. This approach avoids a reordering operation—which is bound to be com-
munication intensive—on the vectors. The models provided in this paper can be used
to encapsulate the total volume of communication in the vector ordering operation.
Therefore, the models can be used to exploit the flexibility in partitioning disjoint
phases of computations.

Although the elementary model and subsequent models obtained from it help
partition all the operands of a matrix-vector multiply neatly, they conceal the freedom
in assigning vector entries to processors to optimize other cost metrics. For example,
the vertex x5 in Figure 3.1(c) can be reassigned to any processor in Λx(5) without

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVISITING HYPERGRAPH MODELS 603

changing the computational loads of the processors to reduce communication cost
(see [2, 10, 11, 13]).

Acknowledgments. We thank Prof. R. Bisseling of Utrecht University for helpful
suggestions on the paper and the anonymous referees for their constructive suggestions
on the presentation.

REFERENCES

[1] C. Aykanat, A. Pınar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[2] R. H. Bisseling and W. Meesen, Communication balancing in parallel sparse matrix-vector
multiplication, Electron. Trans. Numer. Anal., 21 (2005), pp. 47–65.

[3] Ü. V. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, in Proceedings of Parallel Algorithms for Irregularly Struc-
tured Problems, Santa Barbara, CA, 1996, Lecture Notes in Comput. Sci. 1117, Springer,
Berlin, 1996, pp. 75–86.

[4] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for paral-
lel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Systems, 10 (1999),
pp. 673–693.

[5] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool, Ver-
sion 3.0, Tech. Rep. BU-CE-9915, Computer Engineering Department, Bilkent University,
Ankara, Turkey, 1999.

[6] Ü. V. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2D decomposition of
sparse matrices, in Proceedings of the 15th International Parallel and Distributed Process-
ing Symposium (IPDPS), San Francisco, CA, CD-ROM, IEEE, 2001.

[7] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Comput., 26 (2000), pp. 1519–1534.

[8] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, Chich-
ester, UK, 1990.

[9] A. Pınar, Ü. V. Çatalyürek, C. Aykanat, and M. Pınar, Decomposing linear programs
for parallel solution, in Proceedings of the Second International Workshop on Applied
Parallel Computing, PARA’95 Lyngby, Denmark, 1995, Lecture Notes in Comput. Sci.
1041, Springer, Berlin, 1996, pp. 473–482.

[10] B. Uçar and C. Aykanat, Minimizing communication cost in fine-grain partitioning of sparse
matrices, in Proceedings of ISCIS-2003, Antalya, Turkey, 2003, Lecture Notes in Comput.
Sci. 2869, Springer, Berlin, 2003, pp. 926–933.

[11] B. Uçar and C. Aykanat, Encapsulating multiple communication-cost metrics in partitioning
sparse rectangular matrices for parallel matrix-vector multiplies, SIAM J. Sci. Comput.,
25 (2004), pp. 1837–1859.

[12] B. Uçar and C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative
methods, SIAM J. Sci. Comput., 29 (2007), pp. 1683–1709.

[13] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

