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Abstract

By committing to long-term supply contracts, buyers seek to lower their purchasing costs, and have products de-
livered without interruption. When a long-term contract is available, suppliers are less pressured to find new customers,
and can afford to charge a price lower than the prevailing spot market price. We examine sourcing decisions of a firm in
the presence of a capacity reservation contract that this firm makes with its long-term supplier in addition to the spot
market alternative. This contract entails delivery of any desired portion of a reserved fixed capacity in exchange for a
guaranteed payment by the buyer. We investigate rational actions of the two parties under two different types of pe-
riodic review inventory control policies used by the buyer: the two-number policy, and the base stock policy. When
typical demand probability distributions are considered, inclusion of the spot market source in the buyer’s procurement
plan significantly reduces the capacity commitments from the long-term supplier. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction cost of inputs may lead to considerable financial
losses. In dealing with its suppliers, a company

The procurement of raw materials and may decide to enter into short- or long-term con-

components used in the manufacturing process is a
critical managerial task. In the US, cost of
purchased inputs constitute about 50% of its total
sales for a typical manufacturing firm (Subra-
maniam, 1998), implying that overlooking the
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tractual relations. Ongoing developments in the
global economy have significantly influenced and
altered the traditional form of manufacturer—sup-
plier relationships. The adoption of just-in-time
production and competitive pressures on quality
have caused leading companies to start ap-
proaching their suppliers as long-term outside
partners instead of adversarial parties. In this pa-
per, we develop analytical models to examine the
manufacturer—supplier relations from both parties’
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Notation

B buyer’s optimal expected profit per period

B2 buyer’s optimal expected profit per period
in the absence of Supplier 1

B12  buyer’s optimal expected profit per period
under base stock policy

Cs unit production cost of Supplier 1 and
Supplier 2

¢ unit capacity price charged by Supplier 1

C unit supply price charged by Supplier 2

D value of capacity reservation contract to
the buyer

EP  Dbuyer’s expected profit per period under
base stock policy

f(.) probability density function for demand

F(.)) cumulative probability distribution func-
tion for demand

F.(.) complementary cumulative probability
distribution function for demand

h holding cost per unit

Jmax  maximum expected joint profit of the
buyer and Supplier 1

k cut-off unit capacity price over which the
optimal base stock policy includes two
suppliers

L(.) expected shortage-holding cost per period

p unit selling price charged by the buyer

0:(r) average delivery amount per period in the
standard single supplier problem with
optimal base stock level equal to r

S1 Supplier 1’s expected profit per period

S2  Supplier 2’s expected profit per period

T combined expected profit per period of
the buyer, Supplier 1, and Supplier 2

X Supplier 1’s expected profit per period
when the buyer implements a base stock
policy and uses only Supplier 1

X>  Supplier I's expected profit per period
when the buyer implements a base stock
policy and uses both suppliers

Y random demand per period

mean demand

o shortage penalty cost per unit

=

perspectives, and explore the conditions influenc-
ing the choice of long- or short-term supply rela-
tionships.

Various factors influence the relationships be-
tween manufacturers and their suppliers. Supplier
involvement in the product development process,
cost and quality of delivered materials, and risks of
supply disruptions are some major factors con-
sidered by manufacturers (De Toni and Nassim-
beni, 1999). Helper and Sako (1995) survey recent
trends in supplier relations in the US and Japanese
automotive industries.

The reasons for the adoption of different pro-
curement strategies by firms have been explored in
the economics literature using the concept of
“Transaction Costs” (Williamson, 1991). Accord-
ing to this viewpoint, a long-term relationship
between a buyer and a supplier is more likely when
the assets required by the relationship do not have
alternative uses, i.e., when one party is highly de-
pendent on the other. De Toni and Nassimbeni
(1999) discuss comparative advantages of “arm’s-

length” sourcing (spot markets) and long-term
partnerships. They also present a survey of Italian
companies, which, in consistence with Transaction
Costs theory, points out that manufacturers are
more inclined (compared to arm’s-length rela-
tionship) to enter long-term relationships with
suppliers when an advanced operational link (e.g.,
deliveries synchronized with the production
schedule) is established between the parties.
Subramaniam (1998) discusses how corporate fi-
nancing decisions can alter the buyer’s motives for
opportunistic behavior in its relations with its
suppliers. The issue of supplier competition in
procurement contracts has also been analyzed by
using “bidding” models (Seshadri et al., 1991).
The management of material flows across a
supply chain is an important part of the operations
management field. The classical inventory theory
prescribes optimal purchasing policies for the
buyer by minimizing the sum of purchasing,
holding, and shortage costs (Porteus, 1990). In
recent years, there has been a growing interest in
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the analysis of supply contracts (Tsay et al., 1999).
A number of papers discuss supply arrangements
that allow the buyer to change, after its initial
commitment, the quantity of goods purchased in
the future, thus mitigating risks caused by demand
uncertainty (Bassok and Anupindi, 1997). Supply
contracts providing flexibility with regard to the
timing of the purchase in an environment of de-
terministic demand and random purchase prices
have been analyzed by Li and Kouvelis (1999).
Cohen and Agrawal (1999) compare the desir-
ability of a long-term contract with predetermined
purchase price against that of a short-term con-
tract subject to fluctuating market prices. These
papers focus on the buyer’s optimal action, and do
not analyze the supplier perspective. As in Cohen
and Agrawal (1999), we model that a buyer can
choose from long or short term contracts. There is
no price uncertainty in our model; but we consider
the possibility of simultaneous use of both types of
contracts, and look into the supplier’s optimal
behavior.

2. A buyer—supplier equilibrium model

We consider a manufacturer who buys an item
as an input for its manufacturing process from
sources outside the organization. Suppose the level
of output of the manufacturing process is linearly
related to the level of input, and the market de-
mand for the output is uncertain. Without loss of
generality, we assume one unit of input is required
for one unit of output. We assume periodic review
inventory control for the input, i.e., the buyer
places purchase orders periodically, the order
amounts depending on the current inventory level
at the ordering instants. For ease of exposition, we
assume that the input is immediately delivered
from the supplier, and the time to transform the
input to output is negligible compared to the pe-
riod length, so the demand for the output of the
manufacturing process per period can also be re-
garded as the demand for the input. Thus, the
buyer (manufacturer) faces an inventory problem
in which it needs to tradeoff the decreasing costs of
holding less output items in stock with the higher
costs of incurring shortages. We also assume unit

sales price (revenue) p, unit holding cost & per
period, and unit shortage penalty cost =, charged
at the end of the period. If the demand in a period
exceeds the stock on hand, excess demand is lost.

The buyer’s problem is to decide in each period
how much input to order so as to maximize its
expected profit. Although a variety of factors may
be important in selecting a supplier, the most
dominant factor in practice is usually the purchase
cost (Li and Kouvelis, 1999). In this paper, we
assume that the price charged by the supplier will
be the primary determinant of buyer—supplier re-
lationships. Further, in our model, in order to es-
tablish a long-term supply relation, the buyer
demands the supplier to offer a supply price lower
than that offered by other suppliers. In moving
toward longer horizon supply contracts, reduction
in supply cost is among the main benefits desired
by the buyer (Lyons et al., 1990).

Regarding the input item, we assume there is a
group of homogenous suppliers, each of which can
supply the item at a constant unit price without
any long-term commitment, i.e., they constitute
the spot market alternative for the buyer. The
buyer can enter a long-term supply relation with a
preferred supplier provided it will reduce its costs.
However, there should be a mechanism to com-
pensate the supplier for its acceptance of supplying
the item at a lower-than-market cost. To represent
such a mechanism, we consider a supply arrange-
ment that we refer to as a capacity reservation
contract. In this arrangement, which is imple-
mented by some US car manufacturers (Henig
et al., 1997), the buyer guarantees a fixed payment
to the supplier in return for the delivery of any
desired portion of a reserved fixed capacity. If the
realized demand in any period is low, less than
capacity is ordered; however, if the observed de-
mand is higher, and therefore there is not enough
stock on hand, the entire capacity is ordered.
Hence, the buyer essentially buys the right to order
up to a certain number of units from the supplier
each period. In practice, similar supply arrange-
ments designed to provide the buyer with flexibil-
ity in the order quantity are observed in different
industries including textile garment (Eppen and
Iyer, 1997), and integrated circuit manufacturing
(Brown and Lee, 1997). Barnes-Schuster et al.
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(1998) study two-period supply contracts involving
options. Although we do not explicitly quantify
the benefits of a capacity reservation contract for
the supplier, the major benefits can be listed as the
establishment of a long-term business relationship,
reduced need to find new customers, and smoother
future cash flows. Reserving capacity is also re-
garded as one of the counter-measures of the
“bullwhip effect”, i.e., it helps to reduce the vari-
ance of the orders issued to the supplier (Lee et al.,
1997).

We assume that all suppliers (including the
preferred supplier) incur the same unit production
cost, ¢; for the item in consideration, and the spot
market price charged to buyer is ¢, per unit. The
buyer has to decide how much capacity to reserve
from the preferred supplier given the cost of this
reservation. The preferred supplier has to charge a
suitable price for the capacity reservation contract,
knowing the availability of the spot market alter-
native for the buyer. Thus, the market price
charged by the group of short-term suppliers leads
to an equilibrium in which the buyer and the pre-
ferred supplier make their optimal decisions to
maximize their expected profits. We assume that
the cost of reserved capacity is proportional to the
reservation amount. Each period, the buyer pays
the long-term supplier a fixed amount of ¢ R. In
exchange for this fee, the supplier agrees to provide
up to R units of product each period. Thus, c is the
unit capacity price specified by the supplier. The
unused capacity cannot be sold to a third party,
and has no value to the supplier or the buyer.

Finally, we assume that demands during each of
the periods are i.i.d. random variables, denoted by
Y, and that, as commonly assumed in the supply
contracts literature, the information about the de-
mand distribution and the buyer’s cost parameters
is fully available to the long-term supplier.

3. Optimal decisions
3.1. Buyer’s problem
The buyer’s problem is structurally very similar

to the inventory problem embedded in a trans-
portation contract, and studied by Henig et al.

(1997). As we have two different supply options for
the buyer, shipments in their transportation con-
tract occur in two ways: the prespecified truck
volume, and emergency shipments at extra cost.
The stochastic dynamic programming problem
faced by the buyer can be solved in two steps.
First, we ignore the contract costs by assuming
¢ =0, and determine the optimal inventory control
policy for a given R. In the second step, we include
the contract cost ¢ R in the expected profit func-
tion and determine the optimal value of R. Henig
et al. (1997) have shown that under the total ex-
pected discounted cost criterion and backordered
demand assumption, the optimal inventory control
policy for a given R has two critical numbers, SL
and SU. Let I be the inventory level before or-
dering, and Z be the inventory level after ordering
at the beginning of a period. Henceforth, we refer
to the preferred supplier as Supplier 1, and the
spot market sources as Supplier 2. Let ¢; be the
amount ordered from Supplier 1. Then the optimal
policy requires that:

Z=1 (1 =0) if SUI,

Z=SU (q=SU-1I) ifSU—-R<I<SU,
Z=I1+R (q1=R) if SL—R<I<SU—R,
Z=SL (q1 =R) if I<SL—R.

Henig et al. (1997) have conjectured that (SL, SU)
type policy will continue to be optimal under the
long run average cost criterion. Since it is difficult
to find the values of SL and SU analytically, we
utilize numerical methods. After finding the steady
state probabilities of the inventory levels based on
a discrete Markov chain, we can conduct a nu-
merical search for SL and SU (Henig et al., 1997).

3.2. Supplier’s problem

The unit capacity price ¢ is determined as a re-
sult of negotiations between the buyer and Sup-
plier 1. Supplier 1 needs to take into account the
fact that as c¢ increases, the buyer will reduce the
volume of business with him. Since Supplier 1 has
complete knowledge of the buyer’s problem, he
correctly assesses the average amount of orders to
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be received from the buyer if the buyer makes the
optimal ordering decision to maximize his expected
profit. Supplier 1 can use this information to de-
termine the optimal value of ¢, ¢*, that will maxi-
mize expected profit given the buyer’s and Supplier
2’s cost parameters. Thus, it can be thought that
the writing of the contract is done in two stages. In
the first stage, Supplier 1, anticipating the buyer’s
action, quotes the unit capacity price ¢. In the
second stage, the buyer, given ¢, decides how much
to order from Supplier 1. In game theoretic ter-
minology, the buyer and Supplier 1 play a Stac-
kelberg game (Gibbons, 1992, p. 61).

In order to determine the optimal capacity price
to charge the buyer, Supplier 1 needs to compute
the average amount it will supply each period for
all possible values of reserved capacity. This will
usually involve substantial computational work.

Because the two-number control policy studied
by Henig et al. (1997) requires numerical techniques
for finding the optimal solution, it is difficult to
understand the underlying structural relationships
between the parameters of the problem. This is es-
pecially the case when the problem is studied from
the supplier’s perspective. To facilitate obtaining
structural results, in this paper, we use a base stock
policy as an approximate model to study the
tradeoffs involved in a capacity reservation envi-
ronment. Our computational results indicate that
total expected profit of all parties in the system
(buyer, Supplier 1, and Supplier 2) remains fairly
stable under different inventory control policies
used by the buyer. From a broader angle of view, the
total expected profit in the system can be regarded as
the overall societal gain, which is found to be quite
robust to the choice of inventory control policy.
Moreover, the base stock type inventory control
policy is a reasonable choice from a practical
standpoint; it is well-known and widely used by
inventory management practitioners.

4. Base stock policy

4.1. Maximizing buyer’s expected profit

According to a stationary base stock (order-
up-to) control policy, at the beginning of each

period, additional stock is ordered to bring the
inventory level to the base stock level, S. Let
F(y), F. (y) and f(y) be the cumulative distribu-
tion function (cdf), complementary cdf and
probability density function of Y, respectively.
The assumptions of stationary base stock policy
and immediate order delivery imply that the av-
erage holding and shortage costs per period, L(S),
is

L(S) = / (S — 0/ 0)dy
tn / “ - 81 0)dy. (1)

As long as the planning horizon is sufficiently long,
the effect of the inventory on hand at the beginning
of the first period on the optimal profit per period
can be neglected. Alternatively, it may be assumed
that the cost of bringing the initial inventory on
hand to S is treated as a sunk cost. Let Q; be the
average order quantity per period from supplier
i,i =1,2. The starting inventory level does not
change from one period to another so that we can
compute Q; as

0/(R) = / W) dy R / ") dy, @)

O:(R,S) = /R (=R f(y)dy+(S—R)
< [ o)y (3)

The optimal value of R will always be less than or
equal to the optimal value of S, since if R exceeds
S, the (R - S) portion of the reserved capacity can
never be used. If the optimal R is equal to the
optimal S, it indicates that Supplier 2 will never be
used. If R < S in the optimal solution, the buyer
uses both suppliers. Denoting the expected profit
per period by EP, the buyer’s optimization prob-
lem is

max EP(R,S) :pQ1 + (p — Cz)QQ —L(S) —cR

subject to 0<RLS. 4)
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Using Egs. (1)-(4) and Leibniz’s rule (Nahmias,
1993, p. 291),

OEP/0S = (e —p—n—hF(S)+p+7m—c,
OEP/OR = c,F.(R) — c.

Recall that F.(R) =1— F(R). Since EP can be
shown to be jointly concave on S and R, and the
constraint function 1is linear, Karush-Kuhn-
Tucker (KKT) optimality conditions (Bazaraa
et al., 1993) can be used to determine the optimal
solution to the problem. Let A and v be the Lag-
range multipliers. The KKT conditions are:

OEP/OR = j.— v, OEP/dS = —J,
MR—S)=0, vR=0, J,v>0.

The first-order conditions give:

F(§)=(p+nrn—c)/(p+n+h—c) (5)

F(R") = (2 = ¢)/ea. (6)

S* and R* maximize the buyer’s expected profit if
they satisfy S* > R*. If R* > §*, the constraint (4)
is binding and the optimal solution needs to satisfy
R=S. Let R* = 5™ be the optimal pair for the
binding constraint case. The KKT conditions im-
ply that R** and S** satisfy

OEP/0S + OEP/OR = 0. (7)
Solving (7) after substituting R = S, we obtain
FS™)=@p+n—c)/(p+n+h). (8)

Thus, the optimal order-up-to level and reserved
capacity can be determined easily after checking
whether $* > R*. From the monotonicity of F(y),
R* < §* implies that

c>k=ha/(p+rn+h—c). 9)

If ¢ is less than k, Supplier 1 will be the exclusive
supplier for the buyer. Note that the threshold
price, k, does not depend on the demand distri-
bution characteristics.

The optimal values of decision variables that
maximize the buyer’s expected profit are summa-
rized in Table 1. We note that although we have
assumed there is no extra variable cost (ie.,

Table 1
Summary of optimal base stock policy for the buyer
Case Optimal policy
c<k Order from Supplier 1 only, S = R = §**
k<c<c Order from both, S = S*,R = R*
cza Order from Supplier 2 only,
R=0,S=8"

proportional to order volume) for the purchases
from Supplier 1, the preceding analysis can also
be easily extended to the cases where such costs
exist.

4.2. Value of the capacity reservation contract to the
buyer

We now determine the expected benefit to the
buyer of implementing a capacity reservation
contract. For the sake of brevity, we consider only
the case when & < ¢ < ¢;. We use B12 to represent
the buyer’s maximal expected total profit when a
capacity reservation agreement with Supplier 1 as
well as the market source Supplier 2 are available
to the buyer. B2 represents the buyer’s maximal
expected total profit in the absence of Supplier 1.
The difference between B12 and B2 can be re-
garded as the value of the capacity reservation
contract to the buyer after adjusting for market
conditions.

B2 = EP(0,5") = (p — )01 (S*) — L(S*),

BI2 = EP(R",S") = pOy(R*) — ¢R*
+ (p = )[Q1(S) — O1(R")] — L(S7).

Let D be the difference between B12 and B2. As
described above, D denotes the expected savings
for the buyer made possible by entering a capacity
reservation agreement with Supplier 1. After some
algebra and using (2) and (6), we obtain

.
D:BIZ—B2202/0 yf(y)dy. (10)

Thus, the value of D is determined by ¢;, ¢, and the
demand distribution.
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Although it is always possible to compute
D numerically, analytical expressions can be
obtained easily for many families of demand
distributions. For further insight, we use a mean-
preserving transformation to compare the expect-
ed savings, D, across demand distributions with
identical mean values and different uncertainty
levels (Gerchak and Mossman, 1992). The fol-
lowing proposition describes the relationship be-
tween the variability of the demand distribution
and the expected savings from the capacity reser-
vation contract.

Proposition 1. The value of the capacity reservation
contract under a base stock policy is inversely re-
lated to the level of uncertainty in demand.

Proof. See Appendix A.

A high variability in the demand for the man-
ufacturer’s output also implies high variability in
the input item demand. The higher demand un-
certainty will lead to a lower utilization of the re-
served capacity, which increases the effective
supply cost for the buyer. Thus, as the demand
variation increases, the capacity reservation con-
tract becomes less appealing to the buyer. Even
though suppliers may be able to pool demands
from different buyers, nevertheless, in a competi-
tive supplier market, the capacity reservation
contract will be more attractive for a supplier as
the sales uncertainty increases. Correspondingly,
to a large extent, the existence of this kind of
contracts in highly volatile market environments
such as semiconductors can be attributed to the
desires of suppliers to ensure the continuity of
sales.

4.3. Maximizing supplier’s expected profit

Equipped with the information given in Table 1,
Supplier 1 needs to evaluate two different profit
functions, X; and X,, which describe its expected
profit as ¢ varies from 0 to k, and from k to ¢,
respectively. X; and X, refer to Supplier 1’s ex-
pected profit when the buyer, by following the

optimal policy given in Table 1, orders from only
Supplier 1, and from both suppliers, respectively.

This yields the following two optimization
problems:

(I) Maximize X; = cR™ — ¢;01(R™)

subject to ¢ <k,
FRY=(p+n—c)/(p+r+h).
(IT) Maximize X, = ¢R* — ¢;0;(R")

subject to £k < ¢ < ¢,

FR) = (c;—¢)/ca.

Clearly, the maximum possible expected profit of
Supplier 1 is given by the constrained maximum of
X, and X,. The feasible regions and objective
functions in these two formulations take into ac-
count the buyer’s optimal ordering policy given
that ¢ lies between 0 and c¢,.

It is relatively easy to determine the maximum
expected profit of Supplier 1, X*, if X, and X, are
concave functions of ¢. When we have this con-
cavity property, X* will occur at one of the fol-
lowing three points: the unique unconstrained
maximum of X; or X5, or sometimes at the inter-
section point of X; and X, which corresponds to
the case ¢* = k.

Let w; be the value of ¢ that sets the first de-
rivative of X; with respect to ¢ to zero, i = 1,2.
Also let X; (w) be the value of X; evaluated at
¢ = w. If both X; and X, are concave functions of
¢, X* is given by Table 2.

The following proposition states that X; and X,
are concave if the demand distribution belongs to
the large class of increasing failure rate (IFR)
distributions. For example, the normal distribu-
tion, which frequently appears in the inventory
literature, is IFR.

Table 2
Optimal expected profit of Supplier 1 under a base stock policy

Case X

max{X;(wi), X>(k)} = Xi(w1)
max{X;(w;),Xz(w,)}

Xi (k) = Xa (k)

max{X, (k), Xa(w2)} = Xa(w»)

w <k,wy <k
wi<k,w =k
wy > kowy, <k
wi >k,W_7_ >k
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Proposition 2. If the demand distribution is IFR,
both X; and X, are concave on c.

Proof. See Appendix A.

As an example, in Appendix A, we present
explicit expressions for finding the values of w,
and w, for the Weibull distribution which is an
attractive distribution for modeling purposes
since, by appropriate choice of its distribution
parameters, it can also closely approximate several
other unimodal distributions such as the normal
and lognormal. Clearly, by using Table 2, it is also
possible to derive the optimal ¢ values for other
analytically tractable demand distributions. If the
analytical treatment is impracticable, numerical
methods can be easily used to find an optimal
solution, since the search is limited to one vari-
able.

5. Buyer—supplier coordination

First note that, within the boundaries of our
model, in order for a capacity reservation contract
to exist, Supplier 1 and Supplier 2 should exist as
separate entities. If the same supplier were to offer
both the capacity reservation contract and the spot
market contract with supply price ¢, simulta-
neously, in order to maximize his expected profit,
the optimal decision for this supplier would be to
act as an open market supplier, whether the buyer
uses a base stock or an (SL, SU) policy. Note that
it is a different issue whether the optimal per-unit
price for this supplier continues to be ¢, if he is
allowed to freely choose a per-unit price.

Coordinating the actions of a buyer and a
supplier so as to improve the overall system profits
has been studied by various researchers (Thomas
and Griffin, 1996). Now we consider the system
consisting of Supplier 1 and the buyer. The max-
imum system profit is obtained when the buyer
and Supplier 1 are vertically integrated. In this
case, the buyer will not use Supplier 2 and the
optimal policy will be a base stock policy with base
stock level, S, given by

FS)=@p+n—c)/(p+n+h—cs).

Clearly, the optimal capacity volume will be equal
to S. The maximum expected system profit, Jy.y, 1S

Jmax = (P - CS)QI(S) _L(S)

The buyer-supplier coordination is often difficult
to achieve in practice (Maloni and Benton, 1997).
A great majority of manufacturers depend on
outside suppliers, and do not vertically integrate
(Subramaniam, 1998).

6. Numerical examples

A set of numerical examples are presented in
this section to illustrate the expected distribution
of system profits among the parties under various
circumstances. The results for the base stock, (SL,
SU), and buyer—Supplier 1 coordination policies
are displayed separately. We assume that demand
is distributed as Weibull with mean p = 30, and
excess demand is lost. We also specify the values of
¢, ¢, h, and m. We then calculate the expected
profits of the buyer, Supplier 1, and Supplier 2 for
selected ¢ values under several combinations of p
and o values. Let S1 and S2 denote the expected
profits of Supplier 1 and Supplier 2, respectively.
Supplier 2’s expected profit per period is

S2 = (CQ — CS)QQ.

B refers to the buyer’s optimal expected profit.
Also let T'denote the sum of the expected profits of
all three parties in the system.

6.1. Base stock policy results

Since we keep the average demand constant, the
demand distribution becomes less variable as o
increases; the case o = 1 corresponds to the ex-
ponential distribution. The results in Table 3 show
that the buyer’s expected profit increases as o« in-
creases, which can be explained by the decrease in
the demand variability. Analogously to Proposi-
tion 1, the value of the capacity reservation con-
tract to the buyer (at ¢ =15) increases as o
increases; e.g., in Case 1, D = 46(= 214.2 — 168.2)
for = 1, whereas D = 87.3 for o = 2.
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Table 3
Expected profits under base stock policy

o S ¢ R S1 S2 B T

Case 1.p=20, ¢ =10,¢, =5, h=2,1=6

1 65.9 5 20.8 29 58.3 214.2 301.5
¢ =6.07 15 32 74.3 195.2 301.5
10 0 0 133.3 168.2 301.5

2 50.2 5 28.2 26.8 30.4 327.5 384.8
=179 16.9 53.7 66.5 264.5 384.8
10 0 0 144.6 240.2 384.8

3 43.7 5 29.7 21.4 19.7 367.8 408.9
¢ =8.46 18.5 67.7 58.2 282.9 408.9
10 0 0 147 261.9 408.9

Case2.p=15, ¢, =10, ¢,=5, h=2,1=6

1 56.1 5 20.8 29 51.9 83.7 164.6
¢ =6.07 15 32 67.9 64.8 164.6
10 0 0 126.9 37.7 164.6

2 46.3 5 28.2 26.8 27.9 184.1 238.7
=179 16.9 53.7 64.0 121.0 238.7
10 0 0 142.0 96.7 238.7

3 414 5 29.7 21.4 18.2 221.4 261.1
¢ =8.46 18.5 67.7 56.8 136.6 261.1
10 0 0 145.5 115.5 261.1

In all cases, Supplier 1I’s maximum expected
profit, X*, occurred at ¢* = w, > k, so that it was
never in his best interest to become the sole sup-
plier for the buyer. Since the value of R* does not
depend on p, changes in the selling price do not
influence the maximum expected profit of Supplier
1 unless Supplier 1 finds it more profitable to set
the value of ¢ below k, making him the sole sup-
plier. On the other hand, Supplier 2’s profit is
sensitive to the changes in p. Ceteris paribus, the
buyer’s base stock level is positively related to p.
Since Supplier 2’s share of the buyer’s total order
amount is essentially a residual claim after Sup-
plier 1, Supplier 2’s expected profits change in the
same direction as the change in the buyer’s base
stock level.

Table 3 also indicates that as « increases, sup-
plier 1’s expected profit per period, ¢*R* — ¢;Q(R*),
also increases whereas the average order quantity
from supplier 2, O, decreases. These two outcomes
cause the ratio of Supplier 1’s profits to Supplier
2’s profits to rise, indicating Supplier 1 gains more
business from its market competitors under less
variable demand. It can be said that this result is
driven by the buyer’s decreasing preference for a

capacity reservation contract as the demand be-
comes less predictable.

6.2. (SL, SU) policy results

For the (SL, SU) policy, we computed the op-
timal ¢ value for Supplier 1 and the corresponding
optimal R value for the buyer via numerical
search. The search for SL, SU, and R was con-
ducted over the set of integer numbers by means of
the discrete Hooke and Jeeves method as in Henig
et al. (1997). To find ¢*, we discretized the interval
between ¢, and ¢, with 0.1 increments.

It is interesting to compare the resulting ex-
pected profits of the three parties in the system
when Supplier 1 chooses an optimal ¢ value ac-
cording to the type of the inventory policy used by
the buyer. As shown in Tables 3 and 4, at ¢*, the
total profit in the system and the buyer’s profit are
relatively insensitive to the type of inventory policy
used. On the other hand, going from a base stock
policy to (SL, SU) policy shifts a significant
amount of revenue from Supplier 2 to Supplier 1.
The optimal capacity price for Supplier 1 and the
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Table 4

Expected profits under (SL, SU) policy
o c* R SL SU S1 S2 B T
Case 1.p=20, ¢ =10,¢, =5, h=2,1=6
1 9.1 15 60 137 61.5 58.2 178.4 298.1
2 9.3 19 48 99 81.7 49.5 251 382.2
3 9.2 22 42 76 92.4 36.8 276.9 406.1
Case2.p=15, ¢ =10,¢,=5h=2,1=06
1 9.1 15 50 127 61.5 51.6 47.9 161.0
2 9.1 20 44 98 82.0 422 111.5 235.7
3 9.5 21 40 89 94.5 40.3 124.3 259.1

buyer’s capacity decision corresponding to that
price also appear quite robust with regard to
changes in the selling price. The selling price affects
the buyer’s profit significantly, but has little impact
on Supplier 1’s or Supplier 2’s profits. This is not
actually unexpected since ¢, is kept fixed in the
model. It would be interesting to see if a similar
pattern exists when the price charged by the short-
term supplier ¢, is also treated as a decision vari-
able. Another interesting result is that, under the
(SL, SU) policy, ¢* changes only marginally across
different demand distributions.

The ¢* for Supplier 1 is higher when the buyer
implements an (SL, SU) policy. For a given ¢
value, the buyer reserves a higher capacity under
an (SL, SU) policy compared to that under a base
stock policy. In an (SL, SU) policy the buyer
generally holds higher levels of inventories which
means, unlike the base stock policy, the unused
portion of the reserved capacity is relatively
smaller. This has a favorable impact on Supplier 1
since Supplier 1 can charge a high capacity price
without experiencing a significant drop in the
contract volume.

Our results indicate that (SL, SU) policy is
more desirable for Supplier 1. The buyer’s ex-
pected profit is slightly higher under the base stock
policy at ¢*; for example, when « = 2 and p = 20,
the difference is $13.5 (= 264.5 — 251). Supplier 1’s
gain from the (SL, SU) policy is $28 (=81.7—
53.7) which is enough to cover the buyer’s loss of
$13.5 if the buyer demands to be compensated. Of
course, another way of enticing the buyer to an
(SL, SU) policy would be to offer a unit capacity
price less than ¢*. It is important to Supplier 1 that

the buyer stays committed to implementing the
inventory control policy based on which the con-
tract was written. Otherwise, the buyer can first
commit to a base stock policy to obtain a lower ¢
from Supplier 1, and later switch to an (SL, SU)
policy to earn windfall profits at the expense of
Supplier 1.

Analogously to the base stock policy, we have
observed that the value of the capacity reservation
contract to the buyer under an (SL, SU) policy
decreases with increasing demand variability. Case
2 in Table 4 contains one representative example
for this behavior (compare D values for o = 1 and
o=2).

6.3. Buyer—supplier coordination results

Table 5 shows the corresponding Jy,.x values for
the examples of Table 3. As shown in Table 5, the
combined expected profit of the buyer and Sup-
plier 1 increases when their decisions are coordi-
nated. Although theoretically coordination yields
benefits, from the buyer’s perspective, it requires a

Table 5
Expected joint profit of the buyer and Supplier 1 under coor-
dination

p o S Jnax =T
20 1 733 303.5

2 52.9 385.5

3 452 409.3
15 1 65.9 168.2

2 50.2 240.2

3 43.7 261.9
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higher level of commitment and dependence on a
single source. As numerical examples illustrate, the
optimal reserved capacity increases substantially
by going from the buyer—Supplier 1-Supplier 2
triad to the buyer—Supplier 1 exclusive partner-
ship.

6.4. Base stock policy with two-part pricing

Table 4 contains Supplier I’'s maximum ex-
pected profit under a capacity reservation contract
with linear pricing and open market competition.
It is also possible for Supplier 1 to extract the same
amount of profits by changing the contract char-
acteristics. For example, the contract may require
that the buyer follows a base stock policy with
predetermined reserved capacity RP. Treating the
capacity reservation amount as a given parameter
may be more realistic in some cases. Under a base
stock policy, the buyer’s and Supplier 1’s combined
profits, as a function of the reserved capacity R
and base stock level S, are

EP + 51 = (c; — ¢;)01(R) + (p — ¢2) 01 (S) — L(S).
(11)

For a certain range of predetermined capacity
volumes R = RP, it is possible to find an implied
base stock level S = S; that will make EP + S1 in
(11) equal to B + S1 values tabulated in Table 5.

As an example, suppose RY = 25. Table 6 lists
the resulting S;, S2, and T values when we replicate
the buyer’s and Supplier 1’s profits given in Table 4
by using a base stock policy.

There is a simple mechanism that will effectively
distribute an average profit of $S1 per period to

Table 6
Base stock level and Supplier 2’s profit implied by prespecified
capacity volume and buyer—Supplier 1 profits

P o EP +S1 Si 52 a

20 1 239.9 88.2 57.3 297.2
2 332.7 64.5 43.4 376.1
3 369.3 50.9 35.9 405.2

15 1 109.4 78.4 54.2 163.6
2 193.5 58 42.1 235.6
3 218.8 51.6 36.0 254.8

Supplier 1. Supplier 1 supplies the product at unit
cost ¢, and the buyer pays Supplier 1 each period
an additional fixed payment of $S1. This type of
contractual arrangement is known as a two-part
tariff policy in the literature (Weng, 1997). Thus,
for the buyer and Supplier 1, a base stock policy
with two-part pricing yield profits equivalent to an
(SL, SU) policy under market equilibrium and
linearly priced capacity. This equivalency between
the two different contract schemes may be useful
from a practical standpoint because of the simpler
nature of the base stock policy.

7. Conclusion

We have studied the use of a capacity reserva-
tion contract as a vehicle for establishing a
stronger connection in buyer—supplier relation-
ships. A capacity reservation contract leads to a
tighter interaction between a buyer and a supplier
because it elevates the status of the supplier to a
long term business partner from being one of
many interchangeable suppliers in the open mar-
ket. The inclusion of market suppliers in the model
forces the two sides of the capacity reservation
agreement to evaluate the viability of the agree-
ment under competitive pressures. We find that an
exclusive partnership between the buyer and pre-
ferred supplier necessitates a significantly higher
capacity to be reserved compared to the option of
dual sourcing. We have shown that it is possible to
design a base stock inventory policy with a two-
part pricing mechanism to match the two-number
policy with linear pricing. Consequently, the buyer
and the preferred supplier have more flexibility
over selecting a suitable contract structure. Our
computational results suggest that because it in-
volves substantial increases in reservation capaci-
ty, single sourcing strategy may not be a practical
alternative.

Long-term contracts allow a supplier to make
more efficient production schedules and invest-
ment plans for the future (Treleven, 1987). Besides
the reduced uncertainty in future revenues and
operations, another benefit for the supplier will be
the favorable treatment it may receive from the
buyer by being the preferred supplier. For many
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industrial suppliers, this creates a first-mover ad-
vantage in becoming a supplier for products under
development. Also, if there is learning by doing,
the supplier’s unit cost of production will decrease
over time as a result of repeated orders, leading to
a competitive advantage. Notwithstanding the
benefits, it is also possible to argue that the re-
sponsibility of making a reserved capacity avail-
able involves some loss of flexibility, hence more
costly resource allocations on the supplier side.
From the buyer’s perspective, establishment of a
long-term relationship facilitates cooperating with
the supplier in controlling and improving the
quality of purchased items.

Various research extensions are possible. A
game-theoretic analysis based on risk preferences
and bargaining powers of the parties may yield
further insight into the mechanism of negotiations
between the buyer and the supplier. It is also
possible to generalize our framework to the case
when the buyer contracts with more than one long-
term supplier; the solution in this case will depend
on the order in which parties make their decisions.
In addition to price-based competition among the
suppliers, the differences between the quality and
reliability of deliveries from the short- and long-
term suppliers may be incorporated into the
model. Finally, it may be interesting to investigate
the problem of allocating a supplier’s production
capacity among multiple buyers within a capacity
reservation framework.
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Appendix A

Proof of Proposition 1. We consider the family of

random variables
Yp=0Y+ (1 -0)pu, 0<O0<I.

Recall that u=E(Y). 0 =1 corresponds to the
original random variable, Y. The higher the value

of 0, the more random the demand is. We use R}, to
denote the optimal reservation capacity when de-
mand is Y. Similar notation applies to other
quantities of interest under Y. Then we have

Fy(Rp) = F([Ry — (1 = 0)p]/0) = (c2 — ) /ca.
Hence,

[R: — (1 —0)u]/0 =R*, and
Ry =0R + (1—0)p. (A1)

Let O(r) = Oi(r). Recall that
Q@%=Alfoxw+r/mf@xw
zu—/m@—ﬂﬂw®k (A2)

Using Egs. (3) and (5) in Gerchak and Mossman
(1992), we obtain

/x(y —ro)fo(y)dy = Q/N(y —r)f(dy. (A3
Combining (A.2) and (A.3),

0k =n— [ =)
=00R")+ (1 -0)u. (A4)

From Section 4.2 we have

B12 — B2 = —cR" 4+ ¢, Q(R") (A.5)

Substituting (A.1) and (A.4) in

Dy = B12y — B2y = —cR}, + c200(R}),

and using (A.5) we obtain

Dy=(c2—¢c)(1—0)u+ 0(B12 — B2). (A.6)

Using (A.5), and the inequalities

p>QR), and R > Q(R),
we have
(ca—c)u> (c2 —c)Q(R") > B12 — B2. (A7)

Finally, (A.6) and (A.7) imply that
dDy/d0 <0, 0<0<L]1. (A.8)
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According to (A.8), while keeping the mean de-
mand fixed, expected savings from a capacity res-
ervation contract monotonically decreases as the
demand uncertainty increases.

Proof of Proposition 2. It can be shown that

dQ;(r)/dc = (dr/dc)F.(r),

R [de = —[exf (R)] ™,

AR [de = —[(p+ 7+ )f(R7)),

dXi/de =R" —[c(p+ 7+ h —¢) — hey
X (ptmt ) IR

d'X,/de* = {(p+ 7+ H)f (R")}
x{—=2—[clp+n+h—cs) — hc]
% [(p+ 7+ B (R (Af (R /dR™)
+eprmem

dX,/de = R* — ¢(cy — ¢) 52 [f (R)] 7,

dX0/de = {1/[e2f (R)H-2 = c(ez — &)
(df(R*)/AR") [[eaf (R)) + e/ e}

IFR distributions have the property that the fail-
ure rate, r(y), increases as y increases (Leemis,
1995, p. 51), where

r(y) =f)/F»).

Hence,

dr(y)/dy = {[df )/ d)F0) + [F 0P/ (RO
(A.9)

In order to show the concavity of X7, let

Ky = {—[df (R™)/dRIE(R™)}/If (R

¢, =-2h(p+n+h)+ch+ (K —2)c(p+n+h)
+ ¢s¢ — Kicse — K heg,

¢y =—2h(p+n+h)+ch—2c(p+n+h)
+ese+ Kile(p+ m+ h) — e — hey).

Note that ¢ = ¢, = @,,
d*X,/dc? = p{(h +¢)

x(p+r+h)’f(R)Y. (A.10)

If the distribution is IFR, (A.9) is positive, which
implies K; < 1. X is concave since (A.10) is al-
ways negative if K; < 1: this is because ¢ = ¢, < 0
if0<K; <1, and ¢ = ¢, < 0if K; < 0. Similarly,
let

Ky = {~[df (R")/dR"IF.(R")}/[f (R"))".
Then

d* Xy /de? = {1/[eaf (R)]}

X{—2+K2+C’S(1 —K2)/C2}. (All)

IFR implies that K, < 1; (A.11) is always negative
if K, < 1, hence, X, is concave for all IFR distri-
butions.

Finding wy and w> when demand distribution is
Weibull
For the Weibull distribution,

F(y) =1—exp[-(y/B)],
) =ap v E().
>0 and o > 0 are the scale and shape parame-

ters, respectively. Weibull is IFR if o > 1. Using
the relationship

y = Bexp{o" In[~InF(y)]},

it can be shown that

(wi+h)/(p+7+h)
= exp{[hcs —wi(p+ 7+ h—¢)
X [a(wi +h)(p+ 7+ )]},
wy = crexp|(cs — ¢2)/(0ca)].
Unlike the direct solution for w,, a nonlinear

equation must be solved to determine the unique
wi. X; (w;) can be evaluated by observing that

Oi(r) = u— (B/)T(1/a)[1 = I(1/, (r/ B)")]

for the Weibull distribution (Leemis, 1995, p. 89),
where I'(s) is the gamma function, and 7(s, ¢) is the
incomplete gamma function defined as follows:
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I'(s) :/ u“*lexp(—u)du for s > 0,
0

t
I(s,4) = [1/T(s)] / W exp (—u) du
0
fors >0 and ¢ > 0.

There exist many mathematical software packages
that can be used to compute I'(s) and I(s, ).
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