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In a manufacturing environment with volatile demand, inventory management
can be coupled with dynamic capacity adjustments for handling the fluctuations
more effectively. In this study, we consider the problem of integrated capacity and
inventory management under non-stationary stochastic demand and capacity
uncertainty. The capacity planning problem is investigated from the workforce
planning perspective where the capacity can be temporarily increased by utilising
contingent workers from an external labour supply agency. The contingent
capacity received from the agency is subject to an uncertainty, but the supply of a
certain number of workers can be guaranteed through contracts. There may also
be uncertainty in the availability of the permanent and contracted workers due to
factors such as absenteeism and fatigue. We formulate a dynamic programming
model to make the optimal capacity decisions at a tactical level (permanent
workforce size and contracted number of workers) as well as the operational level
(number of workers to be requested from the external labour supply agency in
each period), integrated with the optimal operational decision of how much to
produce in each period. We analyse the characteristics of the optimal policies and
we conduct an extensive numerical analysis that helps us provide several
managerial insights.

Keywords: inventory; capacity management; flexible capacity; workforce
availability; supply uncertainty

1. Introduction

Production and capacity decisions of manufacturing firms are significantly affected by
demand volatility. In some industries, dynamic capacity adjustments arise as an effective
tool for handling this volatility. The production capacity can be temporarily increased by
acquiring external capacity resources such as outsourcing, renting machinery, hiring
contingent workers, etc. Effective utilisation of such resources results in increased demand
responsiveness and reduced operational costs. However, external capacity may not always
be available at the desired quantity and/or quality in the environment. Therefore, the
uncertainty of external capacity supply should be considered in production planning.
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In this study, we consider the integrated planning of production/inventory and capacity
under demand and external capacity supply uncertainties.

Capacity can be defined as the maximum amount of production that can be achieved
by utilising internal and external resources, whereas capacity flexibility stands for the
ability to change the capacity temporarily. Especially when the inventory holding and/or
backordering costs are high, capacity flexibility may prove to be an efficient tool for
meeting the volatile demand. We consider labour-intensive manufacturing environments
and hence we consider capacity in terms of the workforce. Throughout the text, we use the
terms ‘workers’ and ‘capacity’ interchangeably. We classify the production capacity under
two main categories: permanent capacity and contingent capacity. Permanent capacity is
formed by the company’s own workforce under a steady payroll, whereas the contingent
capacity is formed by the workers that can be acquired temporarily from an external
labour supply agency (ELSA). In practice, availability of both capacity types may be
subject to uncertainty. Permanent capacity may fail to be exercised in full terms due to
absenteeism, sickness, fatigue, etc. Similarly, a manufacturer’s request for contingent
workers may be totally or partially unmet by the ELSA due to factors such as size of
available temporary worker pool, capability of finding skilled workers, competition in the
environment, demand structure of different customers, and opportunities in alternative
options. In the case where there is a high demand for contingent workers in the market at
the time of the request, or if the manufacturer requires the workers at short notice, the risk
of the request not being met in full terms is higher. Moreover, ELSAs may not be willing to
fulfill a specific request at a specific time, considering potentially better options. Therefore,
the availability of contingent workers may be a major concern when the manufacturer
relies on external capacity for production.

The uncertainty of capacity availability can be expressed as either the ‘all-
or-nothing type’ or ‘partial availability type’. Under the former type, either all or none
of the requested capacity is acquired with corresponding probabilities, whereas the
requested amount may be acquired partially under the latter type. In practice, the
probability of acquiring any given amount of capacity may depend on the amount
requested. For example, a possible partial availability type could be a case where ELSA
is more likely to fulfill the manufacturer’s request when relatively lower capacity levels
are requested.

A labour supply contract between the manufacturer and the ELSA is a possible way
of alleviating the impacts of labour supply uncertainty on the manufacturer where the
manufacturer pays a certain fee per contracted worker per period (reservation cost), and
the ELSA is committed to provide the required number of workers up to the contracted
quantity to the manufacturer with certainty with an additional fee per worker requested
(utilisation cost). Note that this type of contracting is known as ‘option contracting’.
The manufacturer may still request temporary workers in addition to the contracted
workers, but the supply of those workers is subject to uncertainty. Under this setting,
we classify contingent workers under two categories: contracted workers and temporary
workers.

Dynamic adjustments of the permanent capacity, such as hiring or firing, are generally
too costly. For example, firing workers brings in direct compensation costs, which are
substantial in many countries, especially in Europe. Similarly, hiring permanent workers
generally requires a costly thorough search, which also entails mismatch risks. Moreover,
such adjustments tend to have negative effects on the efficiency of workers due to the
social and motivational effects. Therefore, we consider the determination of the permanent
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capacity level as a tactical decision that is made at the beginning of a planning horizon and

not changed until the end of it. Utilising flexible capacity is a means of overcoming these

issues, and we consider this as one of the two main operational tools of coping with

fluctuating demand, along with holding inventory. Consequently, the decisions that we

consider are the determination of the permanent workforce size and the number of

contracted workers from the ELSA at the beginning of the planning horizon, as well as the

number of temporary workers to request from the ELSA and the production quantity in

each period.
Although our motivation for this problem originated from a labour-intensive

manufacturing environment, a similar framework could also fit environments where

capacity is in other terms. For example, additional production capacity could be acquired

from a subcontractor whose production capacity is also demanded by other manufac-

turers, creating an uncertainty in the availability of the subcontractor’s capacity, which

can be decreased by reserving some of this capacity.
There exists a significant usage of a flexible workforce in many countries.

For example, 6.6% of the active labour force of the Netherlands was composed of

flexible workers (temporary, standby, replacement, and other such workers) in 2003

(Beckers 2005). The US Bureau of Labor Statistics (2006) reports that, in February

2005, there were 14.8 million flexible workers (independent contractors, on-call

workers, temporary help agency workers, and workers provided by contract firms)

constituting 10.7% of total employment in the USA. 11.9% of these workers are

related to manufacturing. Aside from the workers with alternative work arrangements
as indicated above, contingent workers accounted for 4.1% of total US employment. In

March 2006, 7.9% of the active labour force in Turkey was composed of contingent

workers (Turkish Statistical Institute 2006). Contingent workers can be hired anytime

and are generally paid for labour hours. The productivity of contingent workers may

vary for industries requiring different skill levels, with the productivity loss increasing

in skill requirements.

2. Literature review

Capacity planning has been analysed extensively at all levels of decision making.

An in-depth review, presenting the formulation and solution of strategic capacity

problems, is provided by Van Mieghem (2003). Holt et al. (1960) pioneered the

research in the field of workforce planning and flexibility, with their seminal work

analysing the trade-off between keeping large permanent workforce levels and frequent

capacity adjustments. Our model considers the same problem in essence, extending it

to the case of demand and capacity supply uncertainty. Wild and Schneeweiss (1993)

analyse manpower capacity planning with a hierarchical approach using stochastic

dynamic programming.
In a particularly relevant work, Milner and Pinker (2001) consider the problem of

designing labour supply contracts between firms and ELSAs under demand and

temporary labour supply uncertainty. The authors consider a single-period setting where
the supply uncertainty is either in terms of productivity loss or unavailability. In the

former case, if the labour request that is placed after demand materialisation exceeds the

contracted quantity, it is met with certainty by the ELSA at a higher cost. In the latter

case, the unavailability is a function of the number of temporary workers available in the
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market and the fee the firm pays to the ELSA per temporary worker. In our work,
we focus on the firm’s problem under a particular contract type. We consider a multi-
period setting and focus on several unavailability structures of labour supply. Moreover, in
our model, capacity decisions are made before the demand materialises, which implicitly
takes the supply lead time into account since it can be considered that contingent workers
are requested at the end of the previous period. Another disparity is that we consider a
production environment including the option of inventory carrying, whereas they consider
a service environment.

The particular contract type that we consider is known as ‘option contracting’ in the
literature. There are two decision variables for the buyer in an option contracting setting:
the number of options to be bought and the number of options to be exercised
depending on the state of the system. By buying options in advance, the buyer provides
incentives for the supplier to build capacity. This setting is partially similar to our
problem, as the manufacturer signs a contract with ELSA to guarantee the supply of
capacity under a certain cost to be paid even when contracted workers are not utilised.
However, in our problem setting we also consider a further layer of flexibility by
requesting additional capacity, the supply of which is subject to uncertainty and its
utilisation is to be decided according to materialisation. Barns-Schuster et al. (2002)
analyse option contracts in a two-period environment under correlated demand and
show that option contracting mitigates the operational costs. Cachon (2003) presents an
extensive survey of the literature on option contracts, as well as other type of contracts,
used in supply chain environments. Main stream research on option contracting deals
with determining the contract parameters in a game theoretic environment where both
parties have conflicting objectives. Together with the differences in the particular
problem environment that we consider, the major difference between our work and this
stream of research is that we focus on the effect of a given option contract on the
operating decisions in a multiple-period setting. Tan (2004) analyses an environment
with a capacitated producer and a subcontractor. The availability of the subcontractor is
subject to uncertainty; however, a level of availability is guaranteed by a contract.
The author shows that a threshold policy with two bands is optimal. This policy is
similar to the optimal production policy of our environment under no supply uncertainty
and under a particular uncertainty structure.

Of the papers that consider integrated production and capacity planning, the following
are relevant to our work. Pinker and Larson (2003) consider the problem of managing
permanent and contingent workforce levels under uncertain demand where inventory
holding is not allowed. The sizes of regular and temporary labour are decision variables
that are fixed throughout the planning horizon, but the capacity level may be adjusted by
setting the number of shifts for each class of workers. Dellaert and de Kok (2004)
investigate the integrated flexible capacity and production planning problem considering a
production capacity composed of long-term contract workers and temporary workers.
The approach of planning capacity and production in an integrated manner outperforms
the decoupled approach. Hu et al. (2004) also investigate an integrated flexible capacity
and production planning problem on a continuous-time framework under Markov-
modulated demand. In a similar problem, Tan and Gershwin (2004) study production and
subcontracting strategies with limited production capacity and fluctuating demand,
considering lead time sensitive customers. Atamturk and Hochbaum (2001) focus on the
integrated capacity and production planning problem under a non-stationary deterministic
demand setting exploiting the trade-offs between capacity expansions, subcontracting and
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carrying inventory. Angelus and Porteus (2002) present a simultaneous capacity and

production planning problem for short life-cycle products, considering capacity

expansions as well as contractions. Yang et al. (2005) consider a production/inventory

system under Markovian internal capacity levels and an outsourcing option, where the

outsourcing decision is made for the next period after observing the realised capacity and

the demand. The authors characterise the optimal production and outsourcing decisions

under the assumption that the outsourcing option is fully reliable, whereas we assume

uncertainty in contingent capacity in our model.
Our work is closely related to the problems considered by Tan and Alp (2005),

Mincsovics et al. (2006), and Alp and Tan (2007). These three papers consider settings

similar to ours, ignoring labour supply uncertainty. Tan and Alp (2005) focus on the

operational decisions under the existence of fixed costs for initiating production and for

using contingent capacity. Alp and Tan (2007) extend this analysis by including the tactical

level decision of determining the permanent capacity levels. Finally, Mincsovics et al.

(2006) model and analyse the problem under a lead time associated with the acquisition

of contingent capacity.
Considering the field of production/inventory planning under random capacity/yield,

Yano and Lee (1995) provide an extensive review of the literature on lot sizing under

random production or procurement yields. Ciarallo et al. (1994) analyse the optimality of

extended myopic policies under uncertain capacity and uncertain demand in a periodic

review setting. In their setting, the production decision is made prior to the realisation of

the random capacity. In a later work, Iida (2002) shows that the problem introduced by
Ciarallo et al. (1994) is equivalent to determining the production quantities after the

realisation of the random capacity. The major difference in our model is that we consider a

more general case where the capacity acquisition probabilities may depend on requested

capacity. Hence, we deal with an integrated capacity and production planning problem,

whereas they consider a production planning problem under capacity uncertainty. This

leads to the necessity of defining two separate decision variables in our model, one for the

requested capacity and the other for the production decision after the capacity is realised,

which should be optimised simultaneously, and hence their optimality results cannot be

generalised to our case.
Kouvelis and Milner (2002) analyse the joint effects of demand and supply uncertainty

on capacity and outsourcing decisions in multi-stage supply chains. The authors indicate

that, as the supply uncertainty increases, capacity investments increase. Unlike our model,

they do not consider operational production/inventory decisions. In another related work,
Schmitt and Snyder (2006) consider a system with supply disruptions under all-or-nothing

availability. The environment that we model is different to a ‘material supply uncertainty’

environment such as that of Schmitt and Snyder (2006), because we have the option of

not utilising some of the capacity that is acquired, which is not the case when material

supply is considered. Moreover, we also consider several partial availability structures.

3. The model

We first present our basic definitions, assumptions and settings in Section 3.1. Then we

provide the dynamic programming formulation in Section 3.2, which can be used to solve

the integrated capacity and inventory management problem under consideration. Finally,

we consider the single-period problem in Section 3.3.
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3.1 Problem settings

3.1.1 Capacity availability and uncertainty

We consider a labour-intensive manufacturing environment where the manufacturer

employs a fixed number of permanent workers, U, throughout a given planning horizon of

length T. The production capacity can be increased temporarily by hiring temporary

workers from ELSAs. The availability of temporary workers is subject to uncertainty. As a

measure to guard against this uncertainty, the manufacturer has the option to make a

contractual agreement with ELSA so that ELSA guarantees to supply a contracted

number of temporary workers – denoted by V – whenever requested. There may also be

uncertainty in the availability of the permanent and contracted workers due to

absenteeism, fatigue, etc. While our model can accommodate all kinds of uncertainty

structures, ELSA is contractually required to provide the contracted workers whenever

requested, therefore we do not consider any uncertainty in the availability of the

contracted workers. We treat U and V as decision variables to be determined at the

beginning of the planning horizon by the manufacturer. At the beginning of each period

t¼ 1, . . . ,T, the inventory level xt is observed, and a capacity target, wt, is determined.

The capacity target corresponds to the total number of workers requested. If wt�U,

no contingent workers are requested, if U�wt�UþV, then contracted workers are

requested in addition to the permanent workers, and, finally, if UþV�wt, then the

manufacturer requests all contracted workers and some extra temporary workers from

ELSAs. However, in any of these cases, the requested capacity target wt may not be

acquired in full due to the uncertainty in capacity availability. The amount of capacity

acquired in period t, mt, depends on the requested quantity, wt, with a probability function

of Pt(mt,wt), which we refer to as the availability function. This function is the convolution

of the availability function of permanent capacity, Pp
t ðm

p
t ,w

p
t Þ, and that of temporary

capacity, Ptw
t ðm

tw
t ,wtw

t Þ. We assume that this uncertainty structure is known by the

manufacturer exactly.
The availability function Pt(mt, wt), which is a joint probability function, can be used to

express any form of uncertainty in capacity availability. For example, if we assume that the

permanent and contracted capacity are fully available with certainty and, in the case where

temporary capacity is requested, acquiring any amount up to the requested capacity is

equally likely, then we have

Ptðmt,wtÞ ¼

0, if mt 5wt � U or mt 5Uþ V � wt,

1, if mt ¼ wt � Uþ V,

1

ðwt �U� VÞ
, if Uþ V5mt � wt or Uþ V ¼ mt 5wt:

8>><
>>:

Note that, in this specific example,

Pp
t ðm

p
t ,w

p
t Þ ¼

1, if mp
t ¼ wp

t � U,

0, otherwise:

�

and

Ptw
t ðm

tw
t ,wtw

t Þ ¼

1

wtw
t

, if mtw
t � wtw

t ,

0, otherwise:

8<
:
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Moreover, there could be an upper limit on the number of temporary workers requested,

where any number above this limit cannot be acquired. Such situations can also be

handled in our model by considering appropriate availability functions.

3.1.2 Cost structure

Once mt is observed, a production decision Qt�mt is made to raise the inventory level to

yt¼ xtþQt. At the end of the period, the demand zt is realised and met. Demand in

period t, Zt, has distribution function Gt(z). The remaining inventory is carried to the next

period at a cost of h per unit and any unmet demand is fully backordered at a unit cost of b

per period. We assume that there are no shortages of raw material and the lead time of

production and acquiring external capacity can be neglected. There are no fixed costs for

initiating production and no material-related costs are considered in the model.

The notation is summarised in Table 1. Further explanation of notation will be provided

as need arises.
The cost of permanent capacity is independent of the production quantity and paid

each period even if there is no production. The unit cost of permanent capacity is cp
per period. Therefore, the total permanent capacity cost for a workforce of size U is cpU

per period. In the particular contract type that we consider, each contracted worker costs

ĉr per period, independent of the utilisation. There is also an additional cost component ĉu
for each contracted worker utilised in production per period. Consequently, the cost of a

utilised contracted worker per period, ĉcw, is ĉcw¼ ĉrþ ĉu. Also, let ĉtw be the cost of a

hired temporary worker per period. In order to synchronise the production quantity with

the number of workers, we redefine the ‘unit production’ as the number of actual units that

an average permanent worker can produce per period. We also define the cost of

Table 1. Summary of notation.

T Number of periods in the planning horizon
U Size of available permanent capacity
V Size of available contracted capacity
cp Unit cost of permanent capacity per period
cr Unit reservation cost of contracted capacity per period
cu Unit utilisation cost of contracted capacity per period
ccw Total unit cost of contracted capacity (ccw¼ crþ cu)
ctw Unit cost of temporary capacity per period
h Inventory holding cost per unit per period
b Penalty cost per unit of backorder per period
� Discounting factor (05�� 1)
wt Capacity requested in period t
mt Capacity acquired in period t
Qt Number of items produced in period t
Zt Random variable denoting the demand in period t
Gt(z) Distribution function of Zt

Pt(mt,wt) Probability function of receiving mt workers when wt workers are requested
xt Inventory position at the beginning of period t before production
yt Inventory position in period t after production
ft(xt,U,V) Minimum total expected cost of operating the system in periods t, tþ 1, . . . ,T,

given the system state xt, U, and V

International Journal of Production Research 4287
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production by contingent workers on the same unit basis, where the cost for contingent

workers is related to their productivity. Consequently, the term ‘w workers are requested’

stands for requesting workers that are sufficient to produce w units. Considering that

productivity rates of permanent, contracted and temporary workers may differ, let �cw and

�tw be the average productivity rates of contracted workers and temporary workers,

respectively, relative to the productivity of permanent workers. The model is valid for all

values of �cw40 and �tw40, however it is likely that 05�tw� �cw� 1. Assuming that the

productivity rates remain approximately unchanged in time, the unit production cost by

contracted workers, ccw, can be written as ccw¼ ĉcw/�cw, where the production-equivalent

unit reservation and utilisation costs by contracted workers, cr and cu, are cr¼ ĉr/�cw and

cu¼ ĉu/�cw, respectively. Hence, the total reservation cost of contracted workers is crV for

a total contracted capacity of V production units. Similarly, the unit production cost by

temporary workers, ctw, can be written as ctw¼ ĉtw/�tw. The total cost of temporary

workers is ctwmt if the firm observes mt temporary workers, regardless of whether they are

utilised or not.

3.2 Dynamic programming formulation

The minimum cost of operating the system from period t until the end of the planning

horizon is denoted by ft(xt,U,V), where we drop U and V from the notation for brevity

whenever appropriate. While the availability functions can be probability mass functions

(i.e. defined on a discrete domain), we consider them to be continuous for generalisation

purposes to cover cases such as the workers leaving production at any time due to sickness,

etc. or some capacity environments other than the labour force. We assume an ending

condition of fTþ 1¼ 0. We model our integrated capacity and inventory management

problem as follows:

ftðxt,U,VÞ ¼ min
wt�0
fHtðwt j xt,U,VÞg, for t ¼ 1, 2, . . . ,T,

f0ðx1Þ ¼ min
U�0, V�0

f f1ðx1,U,VÞg,

where

Htðwt j xt,U,VÞ ¼ gtðwt j U,VÞ þ

Z wt

0

½’tðmt j xtÞ�Ptðmt,wtÞdmt: ð1Þ

Here, gt(wt jU,V) denotes the expected total cost of capacity in period t, for given U and

V values. In our problem environment this function can be stated as

gtðwt j U,VÞ ¼ Ucp þ Vcr

þ

0, if 0 � wt � U,

ðwt �UÞcu, if U � wt � Uþ V,

Vcu þ
R wt�U�V

0 mtctwP
tw
t ðm

tw
t ,wt �U� VÞdmtw

t , if Uþ V � wt:

8><
>:

The function ’tðmt j xtÞ ¼ minyt:xt�yt�xtþmt
fLtðytÞ þ �E½ ftþ1ðyt � ztÞ�g denotes the produc-

tion decision function that attains the minimum total expected cost of operations

in periods t, tþ 1, . . . ,T, excluding the immediate labour costs, where LtðytÞ ¼

h
R yt
0 ðyt � ztÞdGtðzÞ þ b

R1
yt
ðzt � ytÞdGtðzÞ is the regular convex loss function.
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3.3 Single-period problem

Now we consider the last period problem. Let ŷT be the minimiser of LT(yT) and y�T be the

optimal inventory level after production under an acquired capacity of mT in the last

period. Then we have

y�T ¼
xT þmT, if xT þmT � ŷT,
ŷT, if xT � ŷT � xT þmT,
xT, if ŷT 5 xT,

8<
:

and

’TðmT j xTÞ ¼

LTðxT þmTÞ, if xT þmT � ŷT,

LTðŷTÞ, if xT � ŷT � xT þmT,

LTðxTÞ, if ŷT 5 xT:

8><
>: ð2Þ

Then substituting (2) into (1), we obtain the following cost function for requesting

wT workers in total, for xT� ŷT:

HTðwT j xTÞ ¼ gTðwT j U,VÞ þ

Z ŷT�xT

0

LðxT þmTÞPTðmT,wTÞdmT

þ

Z wT

ŷ�xT

LðŷTÞPTðmT,wTÞdmT:

This implies that if the optimal quantity to produce, ŷT� xT is less than or equal to the

acquired capacity, mT, then it is optimal to produce up to ŷT, leaving a portion of the

available capacity unutilised. We note that this property would hold for any period t,

if Lt(yt)þ�E[ ftþ1(yt� zt)] was convex, which we observe not to hold in general in our

numerical experiments that were conducted on a discrete space.
While the uncertainty structures of different capacity sources can be analysed using the

model presented, our focus in the rest of this paper is on the uncertainty of the temporary

capacity.

4. All-or-nothing-type temporary capacity availability

In all-or-nothing-type uncertainty, the firm receives wt temporary workers with

probability p and does not receive any worker with probability (1� p). In particular,

we have

Ptðmt,wtÞ ¼

p, if Uþ V5wt ¼ mt,

1� p, if Uþ V ¼ mt 5wt,

1, if mt ¼ wt � Uþ V,

0, otherwise:

8>>><
>>>:

ð3Þ

This may happen, for example, when the ELSA has better offers from other firms and

therefore rejects the offer of the firm. Here 1� p can be considered as the probability of

ELSA having better alternatives. It may also be the case, for example in assembly lines,

that while the ELSA is able to supply the firm’s request partially, such a partial supply is

not acceptable to the firm.
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In this section we characterise the structure of the optimal policy for the all-or-nothing

case for given U and V. The following theorem characterises the optimal inventory and

capacity management policy when p is reasonably large (p� cu/ctw). Relatively low values

of p would not be sustainable for the operations anyway, since a certain reliability of

ELSA is necessary.

Theorem 4.1: If p� cu/ctw, then (i) the multi-period decision function Ht(wt j xt) is convex

in wt, (ii) the optimal production policy is of state-dependent order-up-to type and the optimal

order-up-to level can be stated as

y�t ðxtÞ ¼

y�tc, if xt 5 y�tc �U� V,

xt þUþ V, if y�tc �U� V5 xt � y�tv �U� V,

y�tv, if y�tv �U� V5 xt � y�tv �U,

xt þU, if y�tv �U5 xt � y�tp �U,

y�tp, if y�tp �U5 xt � y�tp,

xt, if y�tp 5 xt,

8>>>>>>>>><
>>>>>>>>>:

where y�tp, y
�
tv and y�tc are three critical numbers that are independent of the starting inventory

levels for each period t, and they refer to production with permanent capacity only, production

with permanent and contracted capacity only, and production with permanent, contracted and

temporary capacity, respectively, and (iii) the optimal capacity ordering decision is given by

w�t ðxtÞ ¼ y�t ðxtÞ � xt.

Proof: See Appendix A. œ

Corollary 4.2: In the special case of V¼ 0, Ht(wt j xt) is convex in wt for all xt and t.

Theorem 4.1 states that the optimal production decision determines the capacity

ordering decision, meaning that the problem reduces to one with a single decision variable.

Note that this result simplifies the problem significantly. When the starting inventory level

is low and use of temporary workers is required for production, the optimal number of

temporary workers to be requested is as many as necessary for materialising the optimal

production quantity. The acquired capacity level is fully used for production irrespective

of whether or not all of the temporary workers ordered are received. Finally, we present

the following theorem which proves that, as the probability of success increases, the

optimal order-up-to level, and hence the optimal capacity requested, have a non-increasing

structure.

Theorem 4.3: The optimal order-up-to level y�t ðxtÞ is non-increasing in the probability of

success p.

Proof: See Appendix A. œ

This theorem indicates that, as the ELSA becomes more reliable, the temporary

workers requested from the ELSA decrease.

5. Partial temporary capacity availability

Partial availability can be modelled in various forms depending on the operating

characteristics of the ELSAs. We model and analyse the following forms of partial
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availability: (i) uniform availability where the firm has an equally likely chance of

acquiring 0 to w workers; (ii) normal availability where the number of workers to be

received is distributed approximately with a (discrete) Normal distribution; (iii) decreasing

availability where the ELSA has a limited temporary worker pool size, K, and a relatively

stable market so that as w increases, the probability of acquiring each worker decreases;

(iv) moderate availability where lower demands are not preferred by the ELSA in order to

prevent the temporary worker pool size from shrinking, while higher demands have a

lower chance of being met due to the scarcity of supply; (v) increasing availability where

the ELSA attempts to avoid the division of its workforce for this purpose and tries to

satisfy larger-sized requests to a great extent, (vi) high–low availability where the ELSA

wants to meet larger and smaller-sized requests and deter from committing a moderate size

of its workers to a firm, considering the chance of larger-sized demands from other

customers. These structures are summarised in Table 2.
We analyse these partial availability cases mainly based on numerical analysis, as they

are analytically intractable. In the case of uniform supply uncertainty, we show that the

last period’s cost function is convex in the requested capacity target w for a certain

condition on cost coefficients, while the multi-period cost function is observed to be

non-convex. Under other uncertainty types, we observe that the problem is non-convex

both in single- and multi-period cases. Therefore, the search for the optimal solution is

conducted in an exhaustive manner. While we presented our model as a finite horizon

model, our numerical results are conducted for the case of T!1 to facilitate

computations. In the problem settings we consider, we observe that the solution of the

finite horizon problem converges to that of the infinite horizon problem rapidly. The

algorithm is coded in C programming language. We denote the (discrete) normal

availability case with a coefficient of variation of CoV as Normal[CoV]. We truncated the

supply probabilities exceeding the range [0, w] by adding the summation of the out-of-

range probabilities to the corresponding bound, in constructing the normal availability.

We take K¼ 20 in the availability structures with a binomial distribution. We consider

Poisson demand where the mean demand is taken as 10 in Section 5.1 and the demand

Table 2. Summary of capacity availability structures considered.

Availability structure Distribution Pool size

Uniform Discrete uniform (0,w) Unlimited
Normal Discrete normal (w/2, �2) Unlimited
Decreasing Binomial (w, p¼max{K�w, 0}/K) K

Moderate
Binomial w; p ¼

cosð2�w=K� �Þ þ 1

2
; if w � K,

0; otherwise

8<
:

0
@

1
A K

Increasing Binomial (w, p¼min{w,K}/K) K

High–Low
Binomial w; p ¼

sinð2�w=Kþ �=2Þ þ 1

2
; if w � K,

0; otherwise

( !
K
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following a seasonal pattern with a cycle of four periods, the expected demand being 10,
15, 10, and 5, respectively, in Section 5.2, unless otherwise noted. We drop subscript
t when we refer to an infinite horizon solution. Similarly, we consider a stationary labour
supply uncertainty distribution function, P(m, w). In the results that we present, we use the
term ‘increasing’ (‘decreasing’) in the weak sense to mean ‘non-decreasing’
(‘non-increasing’). We provide intuitive explanations for all our results below and our
findings are verified through several numerical studies. However, like any experimental
result, one should be careful about generalising them, especially for extreme values of
problem parameters.

5.1 Optimal production and capacity ordering policies

In this section we provide an analysis of the cost functions, ft(xt) and Ht(wt jxt), and the
characteristics of the optimal production and capacity ordering policies for different forms
of supply availabilities. Our numerical analysis on the discrete space shows that ft(xt) is not
necessarily convex. However, in all problem instances that we solved, this function is quasi-
convex. On the other hand, the decision function, Ht(wt), is not necessarily (quasi-)convex,
as can be observed from Figure 1 for an infinite horizon problem instance. The violating
behaviour is observed around w¼ 20 where the probability of success is low under the
particular high–low availability structure considered. Nevertheless, we show that the last
period’s decision function is convex under uniform availability when ctw is at least 2cu.

Theorem 5.1: Under Uniform availability, the last period’s decision function HT(wT j xT) is
convex for all xT when cu� ctw/2.

Proof: See Appendix A. œ

Corollary 5.2: In the special case of V¼ 0, H(w jx) is convex for all x under uniform
availability.

In all availability structures considered, there exists a threshold starting inventory level
value, below which temporary workers are utilised in addition to the ‘ensured’ (permanent

Figure 1. H(w j x¼ 0) vs. requested capacity – high–low availability, cp¼ 2.5, ctw¼ 3.5, h¼ 1,
b¼ 5, U¼ 10.
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plus contracted) capacity, and above which only ensured capacity is utilised. As the
inventory level, x, increases above this threshold, use of contracted and subsequently
permanent capacity is curtailed. In this region, the following capacity usage for production
is optimal: (i) all ensured capacity; (ii) all permanent workers and a portion of the
contracted workers; (iii) all of the permanent workers; (iv) a portion of the permanent
workers, and (v) none. Cases (ii) and (iv) correspond to two distinct order-up-to levels. For
the special case of no temporary workers, Tan and Alp (2005) prove that this policy is
indeed optimal. However, when x is below this threshold the optimal production decision
depends on a particular realisation of the capacity acquired, which is a random variable.
Therefore, under supply uncertainty the expectation of y*(x), E[y*(x)], does not necessarily
follow an order-up-to-type behaviour, which is shown to be optimal by Tan and Alp
(2005) for deterministic supply.

As pointed out in Section 3, not every worker that is paid for, even a temporary one, is
utilised in the optimal solution. The decision maker sets the requested capacity target
considering the expected outcome, consequently the production decision is made
according to the acquired capacity. We call the difference between the acquired capacity
level and the optimal production level the surplus of temporary capacity (STC).
We examine the effect of availability structure on the STC. Uniform availability yields
the highest STC among all availability structures. This is because the Uniform distribution
has no peak around any point, i.e. it is platykurtic (has negative kurtosis). Therefore, no
particular region of the availability function has more likelihood than the rest, and hence
the system cannot request capacity in a way that matches the required production quantity
with precision. In a particular problem instance, the total expected STC under uniform
availability is nine times more than that under normal availability. The STC values in
increasing, decreasing, high–low, and moderate availability structures are very close to
zero since the requested capacity target is set to a value which produces a high success
probability of acquiring the desired capacity level value.

5.2 Sensitivity analysis

In this section we investigate the impact of labour supply uncertainty, demand variability,
and cost parameters on operational and tactical decisions. Unless otherwise noted we let
h¼ 1, cp¼ 2.5, crþ cu¼ 3, ctw¼ 3.5, and �¼ 0.99. In some of our experiments, we assume
normal demand with CoV values of 0.1, 0.2, and 0.3 and Gamma demand with CoV values
of 0.5, 1.0, and 1.5, to investigate the effect of demand variability on flexible capacity
management.

5.2.1 Effect of labour supply uncertainty

In this section we investigate the effects of labour supply uncertainty on flexible capacity
and production management. Table 3 illustrates the change in average inventory level and
the contribution of temporary workers in production under deterministic labour supply,
and normal and uniform availability structures. The average inventory level carried
increases as we switch from deterministic labour supply to uncertain supply. Under
uniform availability, the average inventory levels carried increase drastically when U¼ 6.
This is because the probability of acquiring low capacity levels is much higher when
compared with other availability structures and the system tries to avoid backorders
originating from this by holding higher inventory levels. Nevertheless, this is not the case
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when U¼ 10 and V¼ 2, since the system depends less on the temporary workers in this

case. Finally, the average production made with temporary workers is not affected much

by the different problem parameters considered when U¼ 6, since the low permanent

capacity level is almost always fully utilised anyway.
When the level of ensured capacity is sufficient to produce the average demand and the

temporary labour supply has high variability, we observe that the manufacturer spreads

the total production among periods, rather than utilising flexible capacity against the

demand seasonality (see Figure 2).

5.2.2 Optimal contracted capacity level

In this section we analyse the effects of the problem parameters cr, cu, ctw, b, labour supply

uncertainty, and demand uncertainty on the optimal size of the contracted capacity for a

given permanent capacity. This analysis provides insights into the number of contingent

workers to contract when the manufacturer operates with a suboptimal permanent

capacity level. Table 4 depicts the optimal contracted capacity size under different labour

Table 3. Comparison of supply structures. U¼ 6, V¼ 0.

U¼ 6, V¼ 0 U¼ 10, V¼ 2

Parameters Criteria Deterministic
Normal
[0.15] Uniform Deterministic

Normal
[0.15] Uniform

ctw¼ 1.5 Ave. Inv. Lev. 7.38 7.99 11.34 7.44 7.59 8.35
b¼ 50 %Temporary 40.88 41.22 40.3 7.52 8.49 5.07

ctw¼ 4.5 Ave. Inv. Lev. 7.58 8.22 12.01 8.73 8.80 9.20
b¼ 50 %Temporary 40.04 40.05 40.05 2.59 2.9 1.88

Figure 2. Periodic production-deterministic supply vs. uniform availability. U¼ 10, V¼ 0,
ctw¼ 3.5, b¼ 50.
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supply uncertainty structures. First of all, as the reservation cost, cr becomes larger,
naturally V* decreases. Nevertheless, even when cr¼ ccw (which makes the contracted
capacity practically equivalent to the permanent capacity), we observe that keeping
contracted workers may still be beneficial depending on other cost parameters. As the
labour supply uncertainty increases, the system prefers contracting higher capacities,
as expected. In the normal availability cases, the system carries higher safety stock to avoid
backorders as the backordering cost increases. This leads to system’s preference in higher
capacity flexibility in order to avoid idle capacity costs. However, since all system
parameters interact in the optimal decisions, this result cannot be generalised.
For example, the uncertainty of the labour supply in the uniform availability dominates
this affect and the system prefers higher contracted capacity levels in order to decrease
temporary workers usage, as discussed before.

The effect of demand variability on the optimal contracted capacity heavily interacts
with cost parameters. In the Normal availability structure, V* decreases as the demand
variability increases when ctw is not much larger than ccw, as illustrated in Table 5
for ctw¼ 3.5, in order to avoid unutilised contracted capacity. On the other hand, when ctw
is significantly larger than ccw, the opposite behaviour is observed since the system tries to
avoid using expensive temporary labour, as illustrated in Table 5 for ctw¼ 7.5. However,
the labour supply uncertainty structure also plays an important role in this interaction.
For example, in the increasing availability structure, the system reserves higher contracted
capacity as the demand variability increases since acquiring a small number of workers
from the ELSA is not probable.

5.2.3 Optimal permanent and contracted capacity decisions

In this section we investigate the optimal levels of permanent and contracted capacity
under various settings. Table 6 illustrates the effect of temporary labour cost and labour
supply uncertainty on the optimal capacity levels (permanent and contracted). We observe
that, as the labour supply uncertainty increases, the level of ensured capacity also increases
in line with our observation in Section 5.2.2. When there is no labour supply uncertainty,

Table 4. Optimal contracted capacity level (V*). U¼ 6, ctw¼ 3.5.

b cr Normal [0.1] Normal [0.15] Normal [0.2] Normal [0.25] Uniform

2.5 0.6 3 4 4 4 5
2.5 1.2 2 2 2 3 4
2.5 1.8 2 2 2 2 3
2.5 2.4 2 2 2 2 3
2.5 3 2 2 2 2 3

5.5 0.6 3 4 4 4 5
5.5 1.2 2 2 2 2 4
5.5 1.8 2 2 2 2 3
5.5 2.4 1 2 2 2 3
5.5 3 1 2 2 2 3

50 0.6 3 3 4 4 7
50 1.2 1 2 2 2 5
50 1.8 1 1 2 2 4
50 2.4 1 1 1 2 3
50 3 1 1 1 2 3
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Alp and Tan (2007) show that, for cp¼ ctw, the optimal permanent capacity level is zero.
Nevertheless, this does not turn out to be the case under labour supply uncertainty in order
to hedge against this uncertainty. Moreover, it may be optimal to reserve contracted
capacity even when the cost of a contracted worker is higher than that of a temporary
worker, when the supply uncertainty is high, as is the case under uniform availability
with V*¼ 3. Finally, we note that the ensured capacity level increases as ctw increases,
as expected.

6. Conclusions

In this study, we consider the problem of integrated capacity and inventory management
under non-stationary stochastic demand and capacity uncertainty. We investigate the
problem under the workforce planning framework. The focus of the paper is modelling
and analysing the effects of temporary labour uncertainty. We model a number of possible
availability structures for this purpose: all-or-nothing, uniform, normal, decreasing,
increasing, moderate, and high–low. Our model and analysis provide insights into the
optimal usage of all capacity means coupled with inventory management in this
environment. At the tactical level, these means are contracting a number of contingent
workers whose availability is ensured by a reservation cost and determining the optimal
level of permanent capacity. At the operational level, the decisions to make are
determining the number of workers to be requested from the external labour supply
agency and the quantity of production in each period.

Table 6. Effect of temporary labour cost and uncertainty on ensured capacity (U*,V*). cp¼ 2.5,
cr¼ 0.6, b¼ 50.

ctw Norm [0.1] Norm [0.15] Norm [0.2] Norm [0.25] Uniform

2.5 (2,0) (3,0) (4,0) (5,0) (8,3)
3.5 (8,0) (8,1) (8,1) (8,1) (8,4)

Table 5. Effect of demand uncertainty on optimal contracted capacity level. U¼ 4, b¼ 50.

Demand distribution

Labour supply ctw cr

Normal
[0.1]

Normal
[0.2]

Normal
[0.3]

Gamma
[0.5]

Gamma
[1.0]

Gamma
[1.5]

0.6 8 8 7 6 4 2
Normal [0.25] 3.5 1.2 6 5 5 4 2 0

1.8 6 5 4 3 2 0

0.6 10 10 11 11 12 13
Normal [0.25] 7.5 1.2 9 10 10 10 11 12

1.8 7 8 8 9 9 10

0.6 8 9 9 8 11 11
Increasing 3.5 1.2 6 7 8 7 10 10

1.8 6 6 7 6 8 8
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We show for the all-or-nothing-type availability that the resulting cost function is

convex under a reasonable condition and the optimal production policy is of state-

dependent order-up-to type, which dictates the capacity ordering decision. In the case of

uniform supply uncertainty, we show that the last period’s cost function is convex in the

requested capacity target for a certain condition on the cost coefficients, while the multi-

period cost function is observed to be non-convex. Under other uncertainty types,

we observe that the cost function is non-convex both in single- and multi-period cases.

Furthermore, requesting capacity in such a way that the expected acquired capacity

mimics the optimal requested capacity of the deterministic capacity availability case is

suboptimal.
We also show that not every temporary worker that is paid for is utilised in the optimal

solution. Such a surplus of temporary capacity is highest for the uniform availability

structure, followed by the normal availability structure. The surpluses in increasing,

decreasing, high–low, and moderate availability structures are very close to zero.

We observe that uniform availability performs worst among all availability structures

that we considered in all of our experiments. This is because the uniform distribution is

platykurtic (has negative kurtosis). The absence of any ‘peak’ in the uniform distribution

makes it difficult to manage this availability structure, especially when a larger number of

workers are required. Increasing, decreasing, high–low and moderate availability

structures are easier to manage, since the requested capacity target can be set to a value

that produces a high success probability of acquiring the desired capacity level in those

cases. In the normal availability case, the performance deteriorates as the variability

increases.
Our analysis provides insights into the number of contingent workers to contract for

any given permanent capacity level. In particular, even when the reservation cost

constitutes 100% of the contracted worker cost, we observe that keeping contracted

workers may still be beneficial. Moreover, we also provide managerial insights when the

permanent capacity level can be optimised as well as the contracted capacity. Even when

the cost of temporary labour is higher than that of permanent or contracted labour, it may

still be the case that the optimal or contracted capacity level is positive in order to hedge

against supply uncertainty.
This research can be extended by considering the perspective of the external labour

supply agency. In such a context, the optimal capacity planning of the ELSA and the

contract design problem between the ELSA and the manufacturer might be of interest.

Investigating the implications of the manufacturer’s contract design preferences on the

ELSA and resolving issues such as how the risks would be shared by both parties are

among further research questions.
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Appendix A: Proofs of theorems

Proof (Proof of Theorem 4.1): We begin by proving the convexity of the last (single) period cost
function, HT(w j x). In all-or-nothing availability, HT(w j x) can be rewritten by suppressing the
subscript T as follows:

Hðw j xÞ ¼

miny:x�y�xþwfLðyÞg, if 0 � w � U ,

ðw�UÞcu þminy:x�y�xþwfLðyÞg, if U5w � Uþ V ,

Vcu þ pðctwðw�U� VÞ þminy:x�y�xþwfLðyÞgÞ

þ ð1� pÞminy:x�y�xþUþVfLðyÞg, if Uþ V5w.

8>>><
>>>:

ðA1Þ

Let ŷ be the minimiser of the convex function L(y), which is known to be G�1(b/(hþ b)) from the
classical newsvendor solution. Note that when ŷ� x we have miny:x�y�xþw{L(y)}¼L(x), which
implies that the optimal production quantity is zero. When ŷ� x, we can write H(w j x) using
Equations (2) and (A1) as follows.

Case I: (0�w�U)

Hðw j xÞ ¼
Lðxþ wÞ, if w � ŷ� x,

LðŷÞ, if ŷ� x5w:

�

Case II: (U5w�UþV)

Hðw j xÞ ¼
ðw�UÞcu þ Lðxþ wÞ, if w � ŷ� x,
ðw�UÞcu þ LðŷÞ, if ŷ� x5w:

�

Case III: (UþV5w)

Hðw j xÞ ¼
Vcu þ pððw�U� VÞctw þ Lðxþ wÞÞ þ ð1� pÞLðxþUþ VÞ, if w � ŷ� x,
Vcu þ pððw�U� VÞctw þ LðŷÞÞ þ ð1� pÞLð ðxÞÞ, if ŷ� x5w,

�

where

 ðxÞ ¼
xþUþ V, if x � ŷ�U� V,
ŷ, otherwise:

�

Note that  (x) is constant in w. Therefore, H(w j x) is convex in w in all of the above regions, for
all values of x, which follows from the convexity of L(�). The first derivative of H(w j x) in the second
region of Case III is dH(w j x)/dw¼ pctw, which is always positive. This indicates that the optimal
value of w cannot reside in this region and hence it is never optimal to order more than necessary.

To conclude the convexity of H(w j x) we need to show that convexity is preserved in transition
points w¼U and w¼UþV. We denote the respective regions by the following subscripts:
I (0�w�U), II (U5w�UþV) and III (UþV5w). The following first-order condition is sufficient:

dHIðw j xÞ

dw
�

dHIIðw j xÞ

dw
�

dHIIIðw j xÞ

dw
:

For the first transition point we need to check the above inequalities for values of x below and
above ŷ�U. If xþU� ŷ then we have limw!U� dHIðw j xÞ=dw ¼ L0ðxþUÞ from the first region of
Case I, and limw!Uþ dHIIðw j xÞ=dw ¼ cu þ L0ðxþUÞ from the first region of Case II. If xþU� ŷ
then we have limw!U� dHIðw j xÞ=dw ¼ 0 from the second region of Case I, and
limw!Uþ dHIIðw j xÞ=dw ¼ cu from the second region of Case II. Since cu40, the convexity is
preserved at the junction point U. If xþUþV� ŷ then we have limw!ðUþVÞ� dHIIðw j xÞ=dw ¼
cu þ L0ðxþUþ VÞ from the first region of Case II, and limw!ðUþVÞþ dHIIIðw j xÞ=dw ¼
pctw þ pL0ðxþUþ VÞ from the first region of Case III. If xþUþV� ŷ then we
have limw!ðUþVÞ� dHIðw j xÞ=dw ¼ cu from the second region of Case II, and
limw!ðUþVÞþ dHIIðw j xÞ=dw ¼ pctw from the second region of Case III. If pctw4cu, the convexity
is preserved at the junction point UþV since L(xþUþV)50 when xþUþV� ŷ.
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If ŷ�U� x5ŷ then the value of w minimising H(w j x) is in region (I) and it is the
minimiser of L(xþw). From the classical newsboy solution we derive the optimal requested capacity
target as

w�ðxÞ ¼ ŷ� x ¼ G�1
b

hþ b

� �
� x ¼ y�p � x:

We let y�p ¼ ŷ. If y�p �U� V < x < y�p �U, then the minimiser of the function H(w j x)
is in region (II). From the first-order condition, we have

0 ¼ cu þ L0ðxþ wÞ:

Note that the optimality equation may not be satisfied even if x is in the above region, particularly if
cuþL0(xþw)40. In that case the optimal policy is to produce at full permanent capacity, w*¼U,
and the resulting order-up-to level is xþU. Otherwise, using the solution of the optimality equation
the optimal requested capacity is found to be w*(x)¼G�1((b� cu)/(bþ h))� x and the corresponding
order-up-to level is y�v ¼ G�1ððb� cuÞ=ðbþ hÞÞ. Note that, for non-negative cu, y

�
v � y�p. The optimal

capacity policy for this particular region is

w�ðxÞ ¼
y�v � x, if x � y�v �U,

U, if y�v �U � x5 y�p �U:

(

If x < y�v �U� V then the minimiser of H(w j x) is in region III. Similarly, we obtain

w�ðxÞ ¼
y�c � x, if x � y�c �U� V,

Uþ V, if y�c �U� V � x5 y�v �U� V,

�

where y�c ¼ G�1ððb� ctwÞ=ðbþ hÞÞ. For 05cu5ctw, the optimal values for the above functions have
the following relation: y�p > y�v > y�c . Using the above property, the single-period state-dependent
order-up-to can be written as

y�ðxÞ ¼

y�c , if x5 y�c �U� V,

xþUþ V, if y�c �U� V5 x � y�v �U� V,

y�v, if y�v �U� V5 x � y�v �U,

xþU, if y�v �U5 x � y�p �U,

y�p, if y�p �U5x � y�p,

x, if y�p 5x,

8>>>>>>>>><
>>>>>>>>>:

ðA2Þ

and w*(x)¼ y*(x)� x.
Using y*(x) we can write f(x) as

fðxÞ ¼ Ucp þ Vcr þ

Vcu þ pðctwðy
�
c �U� V� xÞ

þLðy�c ÞÞ þ ð1� pÞLðxþUþ VÞ, if x5 y�c �U� V,

Vcu þ LðxþUþ VÞ, if y�c �U� V5x � y�v �U� V,

ðy�v �U� xÞcu þ Lðy�vÞ, if y�v �U� V5x � y�v �U,

LðxþUÞ, if y�v �U5x � y�p �U,

Lðy�pÞ, if y�p �U5 x � y�p,

LðxÞ, if y�p 5 x:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Similar to the convexity of the function H, it can be shown that f(x) is also convex. Then the
theorem can be proved by regular inductive arguments. For details, see Pac (2006). œ

Proof (Proof of Theorem 4.3): We prove by induction. Recall from (A2) that the optimal order-
up-to levels of the last period are all independent of p and hence are non-increasing in p. For any
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period t, we have

Htðw j xÞ ¼

miny:x�y�xþwfJtðyÞg, if 0 � w � U,

ðw�UÞcu þminy:x�y�xþwfJtðyÞg, if U5w � Uþ V,

Vcu þ pðctwðw�U� VÞ þminy:x�y�xþwfJtðyÞgÞ

þð1� pÞminy:x�y�xþUþVfJtðyÞg, if Uþ V5w,

8>>><
>>>:

ðA3Þ

where Jt(y)¼L(y)þ�Eftþ 1(y�Z). As shown in the proof of Theorem 4.1, the critical order-up-to
levels y�tp, y

�
tv, and y�tc are found by equating the following expressions to zero in the regions specified,

respectively, when w is set to y� x:

dHtðyt j xÞ

dy
¼

L0ðyÞ þ �
dE½ ftþ1ðy� zÞ�

dy
, if yt � xþU,

cu þ L0ðyÞ þ �
dE½ ftþ1ðy� zÞ�

dy
, if xþU � yt � xþUþ V,

p ctw þ L0ðyÞ þ �
dE½ ftþ1ðy� zÞ�

dy

� �
, if xþUþ V � yt:

8>>>>>>><
>>>>>>>:

ðA4Þ

With the inductive assumption, we assume that the optimal order-up-to level, ytþ 1(x), for period
tþ 1 is non-increasing in p. Since Htþ 1(y j x) is convex in y, our inductive assumption implies that
dHtþ1(ytþ1 j x)/dy is non-decreasing in p, which gives the following:

d2Htþ1ðytþ1 j xÞ

dydp
¼

d2E½ ftþ2ðy� zÞ�

dydp
� 0:

To complete the proof we analyse Equation (A4), the first-order condition for period t, and show
that it is non-decreasing in p. Notice that the only term that can depend on the value of p in the first-
order condition is dE[ f(y� z)]/dy. Therefore, we analyse this part and show that it is increasing in p.
Let y�p, y

�
v and y�c be the points where the first-order condition is satisfied for production with

permanent capacity only, permanent plus contracted capacity and production with temporary
capacity, at period tþ 1

E½ ftþ1ðy� zÞ� ¼

Z y�y�p

0

Jtþ1ðy� zÞfðzÞdzþ

Z y�y�pþU

y�y�p

Jtþ1ðy
�
pÞfðzÞdz

þ

Z y�y�vþU

y�y�pþU

Jtþ1ðy� zþUÞfðzÞdzþ

Z y�y�vþUþV

y�y�vþU

½cuðy
�
v � yþ z�UÞ þ Jtþ1ðy

�
vÞ�fðzÞdz

þ

Z y�y�cþUþV

y�y�vþUþV

½cuðVÞ þ Jtþ1ðy� zþUþ VÞ�fðzÞdz

þ

Z 1
y�y�cþUþV

½cuðVÞ þ ð1� pÞðJtþ1ðy� zþUþ VÞÞ

þ pfcðtþ1Þwðy
�
c � yþ z�U� VÞ þ Jtþ1ðy

�
c Þg�fðzÞdz,

where Jtþ1(y)¼L(y)þ �E[ ftþ2(y� z)]. If we differentiate this expectation with respect to y we obtain
the following expression:

dE½ fðy� zÞ�

dy
¼

Z y�y�p

0

J0tþ1ðy� zÞfðzÞdzþ

Z y�y�vþU

y�y�pþU

J0tþ1ðy� zþUÞfðzÞdz

�

Z y�y�vþUþV

y�y�vþU

cufðzÞdzþ

Z y�y�cþUþV

y�y�vþUþV

J0tþ1ðy� zþUþ VÞfðzÞdz

þ

Z 1
y�y�cþUþV

½ð1� pÞJ0tþ1ðy� zþUþ VÞ � pcðtþ1Þw�fðzÞdz:
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To analyse how this expression changes with respect to p, we differentiate the above expression with
respect to p:

d2E½ fðy� zÞ�

dydp
¼ �

dy�v
dp

fðy� y�v þUÞ½cu þ J0tþ1ðy
�
vÞ� þ

dy�v
dp

fðy� y�v þUþ VÞ½cu þ J0tþ1ðy
�
vÞ�

þ
dy�c
dp

fðy� y�c þUþ VÞ½�pJ0tþ1ðy
�
c Þ þ pcðtþ1Þw�

�

Z 1
y�y�cþUþV

½cðtþ1Þw þ J0tþ1ðy� zþUþ VÞ�fðzÞdz

þ

Z y�y�p

0

d2Jtþ1ðy� zÞ

dydp
fðzÞdzþ

Z y�y�vþU

y�y�pþU

d2Jtþ1ðy� zþUÞ

dydp
fðzÞdz

þ

Z y�y�cþUþV

y�y�vþUþV

d2Jtþ1ðy� zþUþ VÞ

dy dp
fðzÞdz

þ

Z 1
y�y�cþUþV

ð1� pÞ
d2Jtþ1ðy� zþUþ VÞ

dy dp
fðzÞdz

¼ �

Z 1
y�y�cþUþV

½cðtþ1Þw þ J0tþ1ðy� zþUþ VÞ�fðzÞdz

þ

Z y�y�p

0

d2E½ ftþ2ðy� zÞ�

dydp
fðzÞdzþ

Z y�y�vþU

y�y�pþU

d2E½ ftþ2ðy� zþUÞ�

dydp
fðzÞdz

þ

Z y�y�cþUþV

y�y�vþUþV

d2E½ ftþ2ðy� zþUþ VÞ�

dydp
fðzÞdz

þ

Z 1
y�y�cþUþV

ð1� pÞ
d2E½ ftþ2ðy� zþUþ VÞ�

dydp
fðzÞdz

� 0:

Notice that the first three terms in the initial identity are all zero, which follows from the first-order
condition. The final term is always positive as y� zþUþ V � y�c , therefore the term
c(tþ 1)wþ J0tþ1(y� zþUþV) is always negative in the region of integration, and from the inductive
assumption d2E( ftþ 2(y� z))/dy, dp is always positive, therefore the corresponding integrals are all
non-negative, which gives us the desired result. œ

Proof (Proof of Theorem 5.1): The theorem is proved for a continuous uniform distribution.
Omitting the constant term UcpþVcr, the single-period cost function for the uniform temporary
labour uncertainty case can be written as

Hðw j xÞ ¼

’ðw j xÞ, if 0 � w � U,

ðw�UÞcu þ ’ðw j xÞ, if U5w � Uþ V,

Vcu þ
R w�U�V
0 ðmctw þ ’ðUþ Vþm j xÞÞ

1

w�U� V
dm, if Uþ V5w:

8>>><
>>>:

To prove that H(w j x) is convex it is sufficient to analyse the case with a temporary capacity region
and the corresponding transition point, since for w�UþV the function remains identical for all
labour supply uncertainty types.
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For w4UþV:

Hðw j xÞ ¼

Vcu þ ctw
ðw�U� VÞ

2
þ

Z w�U�V

0

LðxþUþ VþmÞ

ðw�U� VÞ
dm, if Uþ V5w � y�p � x,

Vcu þ ctw
ðw�U� VÞ

2
þ

Z y�p�x�U�V

0

LðxþUþ VþmÞ

ðw�U� VÞ
dm

þ

Z w�U�V

y�p�x�U�V

Lðy�pÞ

ðw�U� VÞ
dm, if y�p � x5w:

8>>>>>>>><
>>>>>>>>:

We take the first derivative of the function to check the first-order condition:

dHðw j xÞ

dw
¼

ctw
2
þ

LðxþwÞ

ðw�U�VÞ
�

Z w�U�V

0

LðxþUþVþmÞ

ðw�U�VÞ2
dm, if UþV5w� y�p�x,

ctw
2
þ
Lðy�pÞðy

�
p�x�U�VÞ

ðw�U�VÞ2
�

Z y�p�x�U�V

0

LðxþUþVþmÞ

ðw�U�VÞ2
dm, if y�p�x5w:

8>>><
>>>:

At the transition point w ¼ y�p � x the first derivatives are equal, therefore if the second derivative is
non-negative on both sides of the transition point, the first-order condition will be satisfied.

d2Hðw j xÞ

dw2
¼

L0ðxþwÞðw�U�VÞ2� 2LðxþwÞðw�U�VÞ

ðw�U�VÞ3

þ
2
R w�U�v
0 LðxþUþVþmÞdm

ðw�U�VÞ3
,

if UþV5w� y�p�x:

2
R y�p�x�U�V
0 LðxþUþVþmÞdm

ðw�U�VÞ3
�
2Lðy�pÞðy

�
p�x�U�VÞ

ðw�U�VÞ3
, if y�p�x5w:

8>>>>>>>><
>>>>>>>>:

It is evident that d2H(w j x)/dw2 is positive for w > y�p � x, because the first term in the nominator is
greater than the second term, since it integrates L(xþUþVþm) over a region where the values are
greater than the optimal Lðy�pÞ, whereas the second term is equivalent to the integration of Lðy�pÞ
over the same region. For Uþ V < w � y�p � x we take the limit of the second derivative as
w!UþV and show that it is positive, and remains positive throughout the whole domain:

lim
w!UþV

L0ðxþ wÞðw�U� VÞ2 � 2Lðxþ wÞðw�U� VÞ þ 2
R w�U�v
0 LðxþUþ VþmÞdm

ðw�U� VÞ3
¼

0

0
:

Using L’Hopital’s rule we obtain

L00ðxþwÞðw�U�VÞ2þ 2L0ðxþwÞðw�U�VÞ� 2L0ðxþwÞðw�U�VÞ� 2LðxþwÞþ 2LðxþwÞ

3ðw�U�VÞ2

¼
L00ðxþwÞ

3
> 0:

The second derivative is positive at UþV, and we have to ensure that it remains positive for
w4UþV. To do so we check the numerator of the second derivative, since the denominator is
always positive for w4UþV. We take the derivative of the numerator and check if it is positive.
Let us denote the numerator by $(w), then d$(w)/dw¼L0 0(xþw)(w�U�V)2, which is positive for
all w, hence the function is convex for w4UþV.

To conclude the convexity of H(w jx), we need to show that the convexity is preserved at the
transition point w¼UþV. Since H(w j x) is dependent on the starting inventory level x, the
first-order condition should be satisfied for all x. It is sufficient to analyse the transition point for
x < y�p �U� V and x � y�p �U� V. Note that we analyse the derivative of the function on
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both sides of the transition point. For the initial case, H(w j x) takes the following form near the
transition point:

Hðw j xÞ ¼

cuðw�UÞ þ Lðxþ wÞ, if U5w � Uþ V,

Vcu þ ctw
w�U� V

2
þ

Z w�U�V

0

LðxþUþ VþmÞ

w�U� V
dm, if Uþ V5w � y�p � x:

8<
:

The first derivative for this region is

dHðw j xÞ

dw
¼

cu þ L0ðxþ wÞ, if U5w � Uþ V,

ctw
2
þ

Lðxþ wÞ

w�U� V
þ

Z w�U�V

0

LðxþUþ VþmÞ

ðw�U� VÞ2
dm, if Uþ V5w � y�p � x:

8><
>:

The first-order condition for the above region is

cu þ L0ðxþ wÞ �
ctw
2
þ
Lðxþ wÞðw�U� vÞ �

R w�U�V
0 LðxþUþ VþmÞdm

ðw�U� VÞ2
:

Taking the limit as w!UþV we obtain

cu þ L0ðxþ wÞ �
ctw
2
þ
L0ðxþ wÞ

2
:

Note that the above inequality holds if cu� ctw/2.
For the second case (x � y�p �U� V), the cost function takes the following form:

Hðw j xÞ ¼

cuðw�UÞ þ Lðy�pÞ, if y�p � x5w � Uþ V,

Vcu þ ctw
w�U� V

2
þ Lðy�pÞ, if Uþ V5w:

8<
:

The first derivative for this region is in the following form:

dHðw j xÞ

dw
¼

cu, if y�p � x5w � Uþ V,

ctw
2

, if Uþ V5w:

8<
:

For the first-order condition to hold, cu must be less than or equal to ctw/2. Therefore, if cu� ctw/2
then the single-period cost function is convex in w for all starting inventory levels x. œ
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