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Abstract—Mobile crowdsourcing is rapidly boosting the
Internet of Things revolution. Its natural development leads to an
adaptation to various real-world scenarios, thus imposing a
need for wide generality on data-processing and task-assigning
methods. We consider the task assignment problem in mobile
crowdsourcing while taking into consideration the following: (i)
we assume that additional information is available for both
tasks and workers, such as location, device parameters, or task
parameters, and make use of such information; (ii) as an
important consequence of the worker-location factor, we assume
that some workers may not be available for selection at given
times; (iii) the workers’ characteristics may change over time. To
solve the task assignment problem in this setting, we propose
Adaptive Optimistic Matching for Mobile Crowdsourcing (AOM-

MC), an online learning algorithm that incurs ~OðT ð �Dþ1Þ=ð �Dþ2Þþ�Þ
regret in T rounds, for any � > 0, under mild continuity
assumptions. Here, �D is a notion of dimensionality which captures
the structure of the problem. We also present extensive simulations
that illustrate the advantage of adaptive discretization when
compared with uniform discretization, and a time- and location-
dependent crowdsourcing simulation using a real-world dataset,
clearly demonstrating our algorithm’s superiority to the current
state-of-the-art and baseline algorithms.

Index Terms—Crowdsourcing, online learning, task assign-
ment, contextual multi-armed bandits, adaptive discretization.

I. INTRODUCTION

GENERALLY, crowdsourcing (CS) refers to the practice

of outsourcing a task to crowds, each individual of which

is referred to as a worker. In recent years, due to tremendous

growth in mobile devices and the average time spent on them,

a new trend of this practice has emerged, called mobile crowd-

sourcing (MCS). Here, the tasks are distributed to workers’

devices, and they usually require gathering sensory data

(mobile crowdsensing) or user-contributed data from social

networking services. This sensory data is becoming extremely

useful in the Internet of Things paradigm. Thus, the thorough

study of mobile crowdsensing has become paramount in this

direction, and incentive mechanisms are being researched to

attract users to tasks [1], [2]. Additionally, methods that can

preserve user privacy are naturally required [3], [4].

There are different key points to consider when optimizing the

completed tasks’ overall quality. First, how should the task

assignment process be controlled? There are generally two ways

of task assignment used in the literature: the server assigned

tasks (SAT) mode and the worker selected tasks (WST)

mode [5]. In SAT mode, the assignment process is controlled by

a mobile crowdsourcing platform (MCSP) that assigns tasks to

workers, taking into consideration the previous history of task

completions and the workers’ potential traits. Then, the workers

decide whether or not to accept the task and complete it. In the

WST mode, the assignment process is primarily controlled by

the workers, where a list of different tasks is presented to them,

and they can select the task they wish to complete. Note that a

key advantage of the SATmode is the access to previous history

and worker information, both of which are essential in guiding

the selection process. On the other hand, the SAT mode may

cause communication overhead and violate worker privacy.

However, even thoughWSTmay preserve worker privacy, there

is no guarantee of an optimal assignment due to the large number

of tasks that the workers have to skim through before they make

their choice. In this case, theMCSPmay intervene by suggesting

some tasks to the workers, thereby narrowing down the set of

potential tasks. This additional task recommendation (TR) is

called theWST/TRmode.

In this work, we consider the SAT mode, where each new

task that arrives is assigned to multiple workers by the MCSP.

Then, the workers decide whether or not to accept and perform

the given task. We choose SAT to fully utilize all the available

information about the workers to optimize task completion,

something that cannot be done by the workers individually.

Furthermore, another critical factor affecting the overall

performance is the side-information about both the task and

the workers. Side-information may include the task and

worker locations [6], [7], the task type and time required to be

completed, and worker device type and quality (e.g., in the

camera quality of a worker’s device in image crowdsensing).

When it comes to assigning workers to tasks, one can restrict

each task to be assigned to one worker, called homogeneous CS.

Alternatively, multiple tasks can be assigned tomultiple workers

in heterogenous CS. In our work, we consider a heterogenous CS

setup where one task is assigned tomultiple workers.
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Aside from these, it is realistic to assume a time-varying set

of workers, especially for a location-dependent crowdsensing

task, where the worker’s location is crucial. For instance,

workers may be on the move and thus be available for a partic-

ular task only a handful of times. Furthermore, certain types of

tasks can be assigned to multiple workers within some budget

constraints to maximize their expected performance on the

task. In this case, it is essential to note that even when assum-

ing that the MCSP has perfect knowledge about workers’ per-

formance in advance, the problem of selecting multiple of

them to complete the task to maximize the overall reward is

combinatorial and may turn out to be NP-hard.

We consider an MCS task assignment problem that consid-

ers all the features above. In order to solve this problem, we

use an online learning framework known as multi-armed ban-

dits (MAB) that can be used to learn a given environment’s

features assuming they come from unknown probability distri-

butions [8], [9]. In its classical version, the problem is formu-

lated as a game that occurs in rounds between a learning agent

and a stochastic environment. A finite set of actions character-

izes the environment, also called arms, each one of which cor-

responds to a probability distribution with finite moments.

The learner selects arms sequentially over rounds, one at a

time, to maximize its cumulative reward, oblivious of the

parameters of the arms’ distributions. The main two chal-

lenges of the learner are i) to avoid exploiting suboptimal

arms, based on some “good” observations about them, mean-

while forgetting about other potentially better arms, and ii) to

incentivize the exploration of arms that have not been

explored yet. All this must be done cleverly so as not to waste

useful resources. The metric used to evaluate the learner’s per-

formance is called the (expected) regret, which is defined as

the cumulative loss of the learner with respect to an oracle

that acts optimally based on arms’ reward distributions. It is

known that maximizing the cumulative reward is equivalent

to minimizing the regret [10]. Many algorithms have been pro-

posed to minimize regret by balancing exploration and exploi-

tation. Two notable examples are upper confidence bound

(UCB) based index policies [9], [10], [11] and Thompson

sampling [8], [12], [13].

An essential extension of the standard MAB is the contex-

tual MAB [14], [15], [16], [17], where at the beginning of

each round, the learner observes side-information, also called

context, about the arm rewards in that particular round. As the

learner tries to maximize its cumulative reward by taking this

information into account, its regret is typically measured with

respect to an oracle that selects the best arm in each round,

given its context. Contextual MAB algorithms have been used

in various applications ranging from personalized news article

recommendation [18] to sequential decision-making in mobile

healthcare [19].

Another important extension of the standard MAB is the

combinatorial MAB (CMAB), where in each round, the

learner chooses a subset of base arms, also called the super

arm, and obtains a reward that depends on the outcomes of the

base arms that are in the chosen super arm [20], [21], [22],

[23]. This problem is mainly investigated under the semi-

bandit feedback setting, where the learner also observes the

outcomes of the selected base arms. It is also extended to han-

dle the cases when some base arms can only get probabilisti-

cally triggered [24], [25], [26]. Combinatorial MAB have

found applications in slate recommendation [27], crowdsourc-

ing [28] and online influence maximization [25].

Deviating from the aforementioned works, another strand of

literature considers MAB with time-varying arm sets under the

names sleeping MAB [29], [30] or volatile MAB [31], both of

which are remnants of mortal MAB [32]. In this setting, the

learner tries to select the best available arm in each round to

maximize its cumulative reward. The concept of volatility is

quite common in applications that involve sequential deci-

sion-making. For instance, in online advertising, ads become

unavailable after they expire [32]. Similarly, in crowdsourc-

ing, the set of available tasks and workers may change over

time [33].

In this paper, we focus on solving the MCS task assignment

problem by exploiting both task and worker context, assuming

that workers’ availability is time-variant and that the MCSP

may select multiple workers to solve a task. Therefore, our

model, namely contextual combinatorial volatile multi-armed

bandit (CCV-MAB), encapsulates a wide range of crowd-

sourcing problems. To solve these problems, we propose an

online learning algorithm called Adaptive Optimistic Match-

ing for Mobile Crowdsourcing (AOM-MC), which is an exten-

sion to ACC-UCB of [34], a UCB-based algorithm designed

for the CCV-MAB setting. It simultaneously tackles volatility

and high-cardinality problems by partitioning the context

space associated with the set of task-worker pairs into continu-

ously refined regions while becoming more and more confi-

dent of the outcomes yielded from that region. Under mild

continuity assumptions, it achie=ves sublinear in time regret

and outperforms the previous state-of-the-art.

Compared with [34], we consider new crowdsourcing-

related aspects, including task budgets, worker costs, and

worker acceptance. Thus, our setup not only uses crowdsourc-

ing terminology but, more importantly, it has more facets and

is more general than that of [34]. Moreover, our algorithm,

AOM-MC, allows for feasible worker assignment sets with

varying cardinalities, contrasting ACC-UCB, which assumed

a fixed cardinality for every worker assignment (super arm).

These changes are, of course, associated with theoretical mod-

ifications. First, we relax the Lipschitz and monotonicity

assumptions on the expected reward function to accommodate

any feasible super arm. Then, based on these assumptions, we

analyze the expected regret incurred by AOM-MC. We also

made some changes to the implementation of the algorithm,

the most important of which involves using a binary search-

like algorithm to traverse the context tree to find leaf nodes.

Lastly, we performed a more realistic higher-dimensional sim-

ulation (9D in this work versus 3D in [34]), comprising a com-

plex and non-greedy-oracle-maximizing reward function. We

also visually illustrate the advantage of using adaptive versus

uniform discretization, something missing from [34].

To sum up, the main contribution of this paper is to propose

AOM-MC, an online learning algorithm that:
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� adaptively discretizes the context space once confident

enough and thus increases the accuracy of its estimates

about the performance of the workers;

� solves both volatility and high-cardinality problems

under mild continuity assumptions;

� achieves sublinear in time regret and converges to the

optimal assignment with respect to any available set of

workers.

Lastly, we first illustrate the difference between adaptive and

uniform discretization in our detailed experiments, demonstrat-

ing why and how adaptive discretization is superior, especially

in crowdsourcing problems. Then, we present the results of a

time- and location-dependent crowdsourcing problem that uses

a real-world dataset, showing our algorithm’s superiority com-

pared with state-of-the-art algorithms in bandit literature and

baseline algorithms in the crowdsourcing literature.

The rest of the paper is organized as follows: Related work

is given in Section II followed by problem formulation in

Section III. Description of the algorithm and regret bounds are

given in Section IV. Numerical results are presented in

Section VI, and concluding remarks are given in Section VII.

Finally, proofs of the lemmas that are used in the regret analy-

sis are given in the supplemental document.

II. RELATED WORK

A. Related Work in Crowdsourcing

The multi-armed bandit framework has been extensively

used for modeling crowdsourcing and crowdsensing prob-

lems [35], [36], [37], [38], [39], [40]. In [35], the authors con-

sider a heterogeneous MCS model, where a requester aims to

collect traffic data from workers in the form of visual images

under some budget constraintsB. Their model is heterogeneous

in that it allows a task to be completed by several workers and a

worker to complete several tasks. The requester first distributes

a list ofM tasks toN workers, each of which (potentially) com-

pletes multiple tasks. This model corresponds to the WST

assignment mode in that the workers are responsible for select-

ing which tasks to complete. Moreover, each task j is associ-
ated with weight vj that represents the task’s level of

importance for the requester. They propose the Unknown

Worker Recruitment (UWR) algorithm, a CMAB algorithm

that first presents the list of tasks to the workers and then, for

each worker, picks only one completed task. It does this for K
workers in each round and selects the best quality data among

them. The algorithm stops when the cost exceeds the budget.

Note that their algorithm does not consider other unknown fac-

tors, such as worker device type or quality, on which the worker

performance also depends. They also provide extensive simula-

tions and prove theoretical guarantees for UWR, which

achieves ~OðNLK3Þ-regret1, where L is the number of com-

pleted tasks from a single worker in a given round.

In [36], the authors consider a homogeneous spatial crowd-

sourcing problem, that is, the data to be collected depends on

the locations of both tasks and workers, and the worker-task

assignment is one-to-one, so a worker cannot complete more

than one task, and a task is assigned only to one worker. The

dynamic nature of the problem is taken into consideration by

framing the problem as a bi-objective optimization problem,

where both worker reliability and travel cost are simultaneously

optimized under uncertainty by using a combinatorial semi-ban-

dit approach. Worker reliability represents the probability that

the worker will complete a particular task, depending on the

worker and task context. Since the assignment process is done in

SATmode, the central platformwill consider the worker’s avail-

ability and distance from the task, consequently introducing the

need to optimize the second objective, travel cost. They propose

the Distance-reliability ratio (DRR) algorithm, which reduces

the travel costs by 80% while maximizing worker reliability.

They also use an interval estimation heuristic to approximate

worker reliabilities when they are unknown beforehand.

The authors of [37] consider a general crowdsourcing prob-

lem and employ a modified Thompson sampling technique for

worker selection while simultaneously maintaining an explora-

tion-exploitation balance via reinforcement learning. They con-

sider the workers’ extrinsic and intrinsic abilities when selecting

them and thus provide a novel worker-ability model. Their

worker selection algorithm incurs ~OðmnÞ-regret, where m and

n represent the number of tasks and workers, respectively.

On the other hand, a learning algorithm that uses the Bayes-

ian framework and models the reward process in time as a

Gaussian process is used in [41], which sequentially solves

the MCS problem. The MCS model considered in their work

is a spatial one, and the inherent assumption is the similarity

of information about the environmental conditions (e.g., noise

in a particular park) of two nearby places. Therefore, the over-

all aim is to maximize information gain about the environmen-

tal conditions by selecting a subset of workers in every round

and observing the information they give. Using the submodu-

larity of information gain, they sequentially select the workers

that maximize the marginal information gain with respect to

the previous selections.

In [42], a theoretical framework for general crowdsourcing

scenarios is introduced, and then a bandit algorithm, called

BLISS, is proposed to make learning possible under uncer-

tainty. Their method is UCB-based and uses a frequentist

approach, incurring sublinear in time regret. Their model

accommodates many scenarios, although it does not consider

the potential task/worker contexts that essentially affect the

performance. They also provide extensive simulations that

demonstrate the robustness of their method.

In [38], the authors propose a differentially private MAB

algorithm under budget constraints B to maximize the work-

ers’ expected cumulative performance. Given a parameter � 2
ð0; 1Þ, they use an �-fraction of the budget for exploration and

the rest for exploitation. They show that their algorithm incurs

sublinear in time regret and is d-differentially private.

In [39], the authors also use a MAB-based model to solve a

spatial crowdsensing problem under budget constraints. [40]

proposed a context-aware hierarchical online learning algorithm

for mobile crowdsourcing that uses uniform discretization and

control function-based exploration-exploitation strategies.1 By using the ~Oð�Þ notation we omit all polylog factors.
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Wemodel the MCS problem using a CCV-MAB framework,

thereby accommodating a wide range of MCS scenarios: (i)

workers are volatile, and their characteristics may change over

time, (ii) workers’ expected performances depend on the joint

task-worker contexts, (iii) the task type is general, and the

MCS type is general; and (iv) the assignment process is hetero-

geneous. We propose an algorithm called AOM-MC that

achieves ~OðT ð �Dþ1Þ=ð �Dþ2Þþ�Þ regret for any � > 0 with respect

to an a-approximation oracle under the assumptions that the

expected performances and the expected rewards are Lipschitz

continuous in the contexts and the expected workers’ perform-

ances respectively. Here, dimension �D, which can usually be

much smaller than the dimension D of the context space, cap-

tures the benignness of the worker arrivals and the structure of

the expected reward.

Table I compares our work with the works discussed above.

B. Related Work in MAB

The most closely related work to ours from the bandit lit-

erature is [43], which also investigates a variant of the CCV-

MAB setting. Using the MAB terminology, this work

assumes that the reward function is submodular and the

expected base arm outcomes are H€older continuous in con-

texts with exponent b > 0, and uses a greedy algorithm as

the approximation oracle. Their proposed learning algorithm,

CC-MAB, uses the similarity information in the space of

contexts to learn the expected base arm outcomes. For this, it

uniformly discretizes the context space X into hypercubes

whose sizes are set according to the time horizon T , resulting
in a regret of ~OðT ð2bþDÞ=ð3bþDÞÞ. As opposed to that work,

our algorithm adaptively discretizes the context space to

leverage worker arrivals’ benignness and the expected per-

formance structure. Thereby, the regret bounds proven for

AOM-MC do not directly depend on the context space

dimension D, and it achieves a strictly smaller regret than

CC-MAB under Lipschitz continuity (b ¼ 1). We also pro-

vide a recipe for obtaining more optimistic regret bounds while

considering the volatility of the workers in the supplemental

document.

Adaptive discretization was first introduced to address the

problem of the continuum-armed bandit [44], [45], where

there are infinitely many arms to choose from, and thus, learn-

ing their expected rewards becomes intractable. This problem

was generalized in [46] to generic measurable spaces of arms,

which also introduced the Hierarchical Optimistic Optimiza-

tion (HOO) algorithm. Under a set of weak continuity assump-

tions on the mean reward function around its maxima, HOO

was shown to achieve ~OðT ðDnþ1Þ=ðDnþ2Þþ�Þ regret, for any � >
0, where Dn is the near optimality dimension related to the

arm space. AOM-MC significantly differs from HOO because

it selects multiple arms in each round, and the set of arms that

it can select from changes in every round.

We compare our work with other MAB-based algorithms in

Table II.

III. SYSTEM MODEL

In this section, we describe the components of the MCSP.

A. The Tasks

We assume that the tasks arrive sequentially over time at

the MCSP. Tasks are ordered based on their arrival time and

are indexed by t 2 f1; 2; . . .g. Task owners can place loca-

tion-dependent or -independent tasks into the MCSP. A task t
is defined by a tuple ðbt; lt; ctÞ, where bt > 0 denotes the bud-

get that the task owner is willing to pay for the task, lt denotes
the task location (we write lt ¼ � when the task is location-

independent) and ct denotes the task context. For instance, the

task context can represent the task difficulty or the amount of

skill required to perform the task. We assume that the task

location is an element of the location set L and the task con-

text is an element of the task context set C.
The task owner has to pay the MCSP a fixed price et 2
½emin; emax� for each worker that completes the task, where

0 < emin � emax. This price depends on the task context and

TABLE I
COMPARISON WITH RELATED WORK IN CROWDSOURCING

TABLE II
COMPARISON WITH RELATED WORK IN BANDITS
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is determined by the MCSP’s fixed context-specific price list.

We assume that bt � et, 8t, i.e., the task owners can afford at

least one worker. Based on the task budget, MCSP assigns at

mostmt :¼ bbt=etc of the available workers to the task.

B. The Workers

LetW :¼ ½W � denote the set of workers in the MCSP. Each

worker corresponds to a mobile user that runs the MCS appli-

cation. A worker is defined by his location and context. For

instance, in an MCS where the workers need to use their

phones, the worker’s context can give information about the

phone’s processing capacity or the worker’s skill level. We

assume that a worker’s location and context can change over

time. Thus, at the arrival time of task t worker w 2 W is

defined by the location-context pair ðlt;w; zt;wÞ. Here, lt;w 2 L

and zt;w 2 Z, where Z denotes the worker context set. We

assume that the workers periodically send their location infor-

mation to the MCSP and that the MCSP has an up-to-date

knowledge of lt;w, 8w 2 ½W �.2
We denote byWt � W the set of available workers for task

t. For location-independent tasks, this can be the set of work-

ers who have their mobile devices turned on and are willing to

accept new tasks. For location-dependent tasks, this can be the

set of workers within the maximum travel distance of task t
and are willing to accept new tasks.

C. Worker Performance

LetX :¼ L 	 C 	 L 	 Z represent the joint context set that

includes task and worker locations as well as task and worker

contexts, and D represent its dimension. We assume that X is

compact. Let aðxÞ 2 f0; 1g represent a worker’s decision given
joint context x 2 X , where aðxÞ ¼ 0 (aðxÞ ¼ 1) represents the
event that the worker rejects (accepts) the task. Similarly, let

qðxÞ 2 ½0; 1� represent the (random) quality of a worker when it

accepts the task given joint context x 2 X . Both qðxÞ and aðxÞ
are random variables whose distributions depend on x. Based
on these, we define the random variable pðxÞ that represents the
performance of a worker given joint context x 2 X as

pðxÞ :¼ qðxÞ if aðxÞ ¼ 1;

0 otherwise.

�

We define m : X ! ½0; 1� such that mðxÞ :¼ E½pðxÞ�, 8x 2 X
as the expected performance function. Notice that the work-

er’s decision to accept the task is not influenced by the task

assignment decision, meaning that given the same x in differ-

ent rounds, E½aðxÞ� will be identical in these rounds.
Let xt;w :¼ ðlt; ct; lt;w; zt;wÞ and X t :¼ fxt;wgw2Wt

. Then,

the performance, interchangeably called the outcome, of

worker w 2 Wt for task t is given as pt;w :¼ pðxt;wÞ. Given a

task with location-context pair ðl; cÞ 2 L 	 C and K workers

with location-context pairs ðlw; zwÞ 2 L 	 Z, 8w 2 ½K�, let
xw :¼ ðl; c; lw; zwÞ represent the joint context for worker w 2

½K� and xxxxxxx :¼ ðx1; . . . ; xKÞ. We represent the performance and

expected performance vectors associated with xxxxxxx as pðxxxxxxxÞ :¼
½pðx1Þ; . . . ; pðxKÞ� and mðxxxxxxxÞ :¼ ½mðx1Þ; . . . ;mðxKÞ�. Based

on the notation above, we define the random reward of a con-

text vector associated with a given task.

Definition 1: Let t be a given task and Wt be the set of

available workers for it, together with the set of available con-

texts X t. Let xxxxxxx :¼ ½x1; . . . ; xK �, where xi 2 X t, for all 1 � i �
K. Then, the random reward of xxxxxxx for task t is

UðpðxxxxxxxÞÞ ¼ Uð½pt;1; . . . ; pt;K �Þ;

where U is a problem-specific non-negative function of the

vector xxxxxxx.
Remark 1: The function U can be a linear function of the

individual (random) outcomes for each worker or a more com-

plicated non-linear function. We only make the assumption

(A4) that the expected value of this reward can be expressed

as a function of individual expected outcomes of workers.

This assumption is not too restrictive and is satisfied by a wide

range of functions if we know the distributions of the out-

comes associated with individual workers without knowing

their expectations [22].

Remark 2: In our setup, the reward of task assignment U
only depends on the worker performance pðxÞ, which is the

product of worker quality qðxÞ and worker decision aðxÞ. Sim-

ply, the performance is 0 if the worker rejects the task and

qðxÞ if the worker accepts the task. A similar performance

model is also used in the prior literature [40].

D. The Optimization Problem

We first define the task assignment problem as a combinato-

rial optimization problem.

Definition 2: Given task t with budget bt and per worker

price et, task context ðlt; ctÞ, available worker set Wt, and

workers’ contexts ðlt;w; zt;wÞ, 8w 2 Wt, the optimal worker

assignment for task t is

S�t 2 argmax
S

E½Uðpðxxxxxxxt;SÞÞ�
subject to S 2 St

jSj � minfbbt=etc; jWtjg; (1)

where St � 2Wt is the set of feasible assignments in round t
and xxxxxxxt;S :¼ ðxt;wÞw2S .

Henceforth, we will denote by mt :¼ minfmt; jWtjg
the maximum number of available workers that can be

assigned to task t. We denote by S ¼ [t�1St the set of all

possible feasible worker assignments. Moreover, we assume

maxt�1mt :¼ K < 1.

The general formulation of the combinatorial optimization

problem can assume different instances of applications, many of

which are known to be NP-hard. Two notable examples are the

Social Influence Maximization problem, shown to be NP-

hard [48], and the Maximum Coverage problem with its deriva-

tives [49]. Given an instance of the functionU , we can comment

on the NP-hardness of the problem. Let us take an example that

2 Some of the workers in W might be unavailable, or they may not share
their location information with the MCSP. If this is the case, then the MCSP
only assigns the task to a subset of the available workers.

ELAHI et al.: ONLINE CONTEXT-AWARE TASK ASSIGNMENT IN MOBILE CROWDSOURCING VIA ADAPTIVE DISCRETIZATION 309

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 16,2023 at 10:55:56 UTC from IEEE Xplore.  Restrictions apply. 



satisfies the assumptions wemake onU , and is intuitive from the

practical point of view. Given task t � 1 together with its associ-
ated available worker set Wt, context set X t and maximum

number of assignmentmt, we let

UðpðxxxxxxxÞÞ ¼
X

xt;w2xxxxxxx:w2Wt

pðxt;wÞ:

Note that in this case we have E½UðpðxxxxxxxÞÞ� ¼ P
x2xxxxxxx mðxÞ.3

Then, we can formulate the optimization problem (1) using the

integer linear programming formulation of the Maximum

Weighted Coverage problem, as follows.

max
X
x2X t

mðxÞyx

subject to yx �
XjX tj

j¼1
axjzj; 8x 2 X t

XjX tj

j¼1
zj � mt

yx 2 f0; 1g; 8x 2 X t

zj 2 f0; 1g; 8j 2 ½jX tj�:

Here the sets are considered as singletons x 2 X t, and the

problem is to find the set of such singletons with maximum

weighted coverage, that is, the set that maximizes the sum

of weights of its elements. Above, yx is 1 if x is covered

and 0 otherwise, zj is 1 if set j (in our case, singleton

xj 2 X t) is selected and 0 otherwise, the variable axj is 1 if

x is in set j (or x ¼ xj) and 0 otherwise. Note that the sec-

ond constraint can be omitted (and therefore the last one)

since we are considering the special case of singletons. The

full formulation is given to show that this instance of the

combinatorial bandit problem, in its offline version, is NP-

hard, as an example of the Maximum Weighted Coverage

problem.

Nevertheless, computationally efficient approximation oracles

exist for a wide set of reward functions u. In this context, we

say that a computation oracle is an a-approximation oracle, if

given inputs Wt and mmmmmmmt :¼ ðmðxt;wÞÞw2Wt
it outputs Sa

t :¼
Oracleðmmmmmmmt;St;mtÞ such that Sa

t 2 St and

E½Uðpðxxxxxxxt;Sat
ÞÞ� � aE½Uðpðxxxxxxxt;S�t ÞÞ�:

Throughout the paper, we assume the MCSP has black-box

access to an a-approximation oracle.

E. Task and Worker Properties

For the MCSP to learn the approximately optimal worker

assignments for each new task, we make some mild assump-

tions about the structure of the worker qualities and the reward

function.

Assumptions.

A1 The MCSP can assess the performance of a single work-

er’s reply, i.e., if the MCSP assigns workers St to task t,
then it observes aðxt;wÞ, 8w 2 St and qðxt;wÞ for w 2 St

such that aðxt;wÞ ¼ 1.
A2 Performances of different workers are independent, i.e.,

pðxt;wÞ, w 2 Wt are independent random variables.

A3 Expected performance is Lipschitz continuous in the

joint context: 8x; x0 2 X ,

jmðxÞ 
 mðx0Þj � dðx; x0Þ

where dðx; x0Þ denotes the distance between joint con-

texts x and x0.
A4 Let GKð½0; 1�Þ denote the set of K-element subsets of

[0,1] and Gð½0; 1�Þ ¼ [WK¼1GKð½0; 1�Þ. Then, 8K 2 ½W �,
8xxxxxxx ¼ ½x1; . . . ; xK � such that xw 2 X , 8w 2 ½K�, we have
E½UðpðxxxxxxxÞÞ� ¼ uðmðxxxxxxxÞÞ, where u : Gð½0; 1�Þ ! Rþ.

A5 8S 2 S, m ¼ ½m1; . . . ;mjSj� 2 ½0; 1�jSj and m0 ¼ ½m01; . . . ;
m0jSj� 2 ½0; 1�jSj, if mm � m0m, 8m � jSj, then uðmÞ �
uðm0Þ, i.e., the expected reward is non-decreasing in the

expected performances.

A6 Expected task reward is Lipschitz continuous in the

expected performances: 9B > 0 such that for all S 2
S, m ¼ ½m1; . . . ;mjSj� 2 ½0; 1�jSj and m0 ¼ ½m01; . . . ;m0jSj�
2 ½0; 1�jSj, we have

juðmÞ 
 uðm0Þj � B
XjSj
i¼1
jmi 
 m0ij:

A1 and A2 are standard in the crowdsourcing literature [40],

[42], [50], [51]. A3merely says that worker-task pairs with sim-

ilar joint contexts have similar expected performances. A4

states that the expected reward only depends on the expected

performances of the workers. This assumption holds when the

reward is a linear function of the performances of the workers

or when the type of distributions of the performances are

known, only the expectations of the performances are unknown,

and the performances of different workers are independent [22].

A5 states that assigning workers with higher expected perform-

ances will never make the expected reward worse than what it

was previously. Note that this does not reduce the problem into

greedily selecting the workers with the highest observed perfor-

mance because the oracle also considers the problem structure

and the nature of the expected reward function. For example,

note that in the simulation setup of Section VI-C, the expected

reward function is the mutual information between the task and

workers’ locations. There, the oracle sequentially selects the

workers that maximize the marginal reward with respect to the

workers’ performances already selected. Thus, in this scenario,

greedy maximization is a suboptimal strategy. A6 holds for

many different types of crowdsourcing tasks, including crowd

solving tasks such as translation and retrieval tasks [50], [52],

where the performances of the workers are additive, and tasks

like cryptocurrency mining [53], where the task is completed if

at least one of the assigned workers can complete the task.

3 We abuse notation and write x 2 xxxxxxx to mean that x is a component of
vector xxxxxxx.
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F. The Learning Problem

The MCSP faces a sequential decision-making problem that

proceeds over rounds indexed by t, where the following events
happen in each round t 2 f1; 2; . . .g:
� Task t arrives and the MCSP observes ðbt; lt; ctÞ.
� The MCSP identifies the set of available workersWt for

task t.
� The MCSP selects anmt-element subset St of the work-

ers inWt.

� At the end of round t, the MCSP observes 8w 2 St,

pðxt;wÞ ¼ aðxt;wÞqðxt;wÞ and uðpðxxxxxxxt;StÞÞ.
Given T 2 N, the goal of the MCSP is to maximize its

expected cumulative reward over T rounds by learning to

match with tasks the right workers. We assume that the MCSP

knows the form of u, which is directly related to the properties

of the crowdsourcing task, but that it does not know m. Since

computing S�t that achieves an expected reward optt :¼
maxS2Stuðmðxxxxxxxt;SÞÞ is computationally intractable even when

m is perfectly known, we assume that the MCSP has access to

an a-approximation oracle, which when given as inputs Wt

and mmmmmmmt :¼ ðmðxt;wÞÞw2Wt
returns an a-optimal solution. Since

the MCSP does not know mmmmmmmt a priori, instead of mmmmmmmt it gives

some parameters uuuuuuut :¼ ðut;wÞw2Wt
as input to the a-approxi-

mation oracle to get St ¼ Oracleðuuuuuuut;St;mtÞ, which is an

approximately optimal solution under uuuuuuut but not necessarily

under mmmmmmmt. As we will explain in Section IV, the learning algo-

rithm of the MCSP chooses uuuuuuut judiciously in each round in

order to balance exploration and exploitation.

We measure the performance of the MCSP by using the

notion of a-approximation regret [22] (referred to as the regret

hereafter). The regret for the first T tasks given flt; ct; bt;
et; flt;w; zt;wgw2W ;WtgTt¼1 is defined as

RaðT Þ :¼ a
XT
t¼1

optt 

XT
t¼1

uðmðxxxxxxxt;StÞÞ:

Note that RaðT Þ is a random variable whose distribution

depends on the randomness of the performances of the work-

ers and the choices of the MCSP given flt; ct; bt; et; flt;w;
zt;wgw2W ;WtgTt¼1.

Our goal is to construct a learning algorithm for the MCSP

that minimizes the growth rate of the regret. In particular, if

we can show that RaðT Þ ¼ OðT gÞ for some g < 1, that will
imply that RaðT Þ=T ! 0, and hence, in the limit as T !1,

the MCSP will accumulate an average that is at least a fraction

of the highest possible average reward. Achieving sublinear

regret for any given flt; ct; bt; et; flt;w; zt;wgw2W ;WtgTt¼1 is an
extremely challenging problem since m is not known by the

MCSP a priori and the set of available workers and the contex-

tual information can change arbitrarily in every round. The

assumptions made in Section III-E are essential in building a

robust learning algorithm that will work under this adversarial

environment. In particular, they will allow the MCSP to adap-

tively partition the joint context space ðX ; dÞ into regions,

which are assumed to contain joint contexts with similar

expected performances, and create partition-based estimates

of expected performances. In the next section, we list the prop-

erties of the context space and the reward function that follow

from the assumptions in Section III-E.

G. Properties of the Context Space

We first define a well-behaved metric space.

Definition 3: (Well-behaved metric space [46]) A compact

metric space ðX ; dÞ is said to be well-behaved if there exists a

sequence of subsets ðXhÞh�0 of X satisfying the following

properties:

1) Given N 2 N, each subset Xh has Nh elements, i.e.

Xh ¼ fxh;i; 1 � i � Nhg and to each element xh;i is

associated a cellXh;i :¼ fx 2 X : dðx;xh;iÞ � dðx;xh;jÞ;
8j 6¼ ig.

2) For all h � 0 and 1 � i � Nh, we have: Xh;i ¼
[Ni
j¼Nði
1Þþ1Xhþ1;j. The nodes xhþ1;j for Nði
 1Þ þ

1 � j � Ni are called the children of xh;i, which in turn

is referred to as the parent.

3) We assume that the cells have geometrically decaying

radii, i.e. there exists 0 < r < 1 and 0 < v2 � 1 � v1
such that we have Bðxh;i; v2r

h=2Þ � Xh;i � Bðxh;i;
v1r

h=2Þ, where Bðx; rÞ denotes a closed ball centered at
xwith radius r. Note that we have v2r

h � diamðXh;iÞ �
v1r

h, where diamðXh;iÞ :¼ supx;y2Xh;i
dðx; yÞ.

The first property implies that for every h � 0 the cells

Xh;i; 1 � i � Nh partition X . This can be observed trivially

by reductio ad absurdum. The second property intuitively

means that as h grows, we get a more refined sequence of par-

titions. The third property implies that the nodes xh;i are

evenly spread out in the space. We assume the metric space of

joint contexts ðX ; dÞ is well-behaved. For instance, it was

proven before that when d is the Euclidean norm, ðX ; dÞ is
well-behaved [46], [54].

Our regret bounds depend on the notion of approximate

optimality dimension, which relates to the dimensions of sets

of optimistic joint contexts that yield approximately optimal

expected rewards. First, we define the approximate optimality

dimension of the joint context space, tailored to our combina-

torial setting, which is inspired by definitions of the near opti-

mality dimension given in [46], [54], [55].

Definition 4: (The approximate optimality dimension)

� A subset X 2 of X is called r-separated if for any

x1; x2 2 X 2 we have dðx1; x2Þ � r. The cardinality of

the largest such set is called the r-packing number of X
with respect to d, and is denoted byMðX ; d; rÞ. Equiva-
lently, the r-packing number of X is the maximum num-

ber of disjoint d-balls of radius r that are contained in X .

� Let Z ¼ fxxxxxxx 2 XjSj : S 2 Sg. For any k > 0, r > 0,
t > 0 and f : Rþ ! Rþ, we define the set

X k
fðrÞ :¼ fx 2 X : k
 uðmðxxxxxxxÞÞ
� fðrÞ ; for some xxxxxxx 2 Z such that x 2 xxxxxxxg

to be an ðfðrÞ; u; kÞ-optimal set. LetMðXk
fðrÞ; d; rÞ be its

r-packing number. We define the ðf;u; kÞ-optimality
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dimension Duðf; kÞ associated with X k
fðrÞ and u as

follows:

Duðf; kÞ ¼ max 0; lim sup
r!0

log ðMðX k
fðrÞ; d; rÞÞ

log ðr
1Þ
� �

Note that if xxxxxxx 2 Z is such that k
 uðmðxÞÞ � fðrÞ, then all

elements of xxxxxxx will be in X k
fðrÞ. The use of the k-optimality

dimension allows us to bound the regret in a way that the time

order of the regret depends on Duðf; kÞ, which can be strictly

smaller than dimension D of the joint context space X , as
opposed to the prior work [43] that has bounds that depend on

D. For instance, we can let u�min ¼ mint2½T �uðmðxxxxxxxt;S�t ÞÞ and
k ¼ au�min to obtain a worst-case approximate optimality

dimension �D ¼ Duðf;au�minÞ.
Remark 3: If we remove the volatility assumption from the

problem setting and assume that the MCSP can choose only one

worker in a given round, �D will be the near optimality dimension

of the joint context space (where we let k be the optimal expected

reward), thus recovering the notion as introduced in previous

works. In Appendix B we explain ways to construct more opti-

mistic regret bounds using the approximate optimality dimension.

IV. A CONTEXT-AWARE TASK ASSIGNMENT ALGORITHM

Our algorithm is called Adaptive Optimistic Matching for

Mobile Crowdsourcing (AOM-MC) and is motivated by several

tree-based methods that have been used for function optimization

under continuity assumptions [46], [54], [55] (pseudocode given

in Algorithm 1).

Two main intuitive components characterize AOM-MC.

First, note that to solve problem (1), we need to know the

expected rewards associated with different assignments. As this

is impossible, the algorithm uses its past random observations

to construct good estimates of them based on the law of large

numbers. To avoid suboptimal exploitation, it also adds an infla-

tion term to the estimates, which incentivizes exploration of

underexplored assignments. However, the CCV-MAB setting

introduces additional problems that make the abovementioned

rationale futile. Note that the amount of exploration of a particu-

lar assignment is conditioned on its availability over time. Thus,

some assignments may be hopelessly underexplored.

On the other hand, using the side information about assign-

ments is beneficial since information never hurts. However, the

continuous nature of these contexts makes the optimization over

them hard in a discrete-time fashion. In worker-task assignment

in crowdsourcing, the interaction between the worker and the task

affects the worker’s performance on the task. An arm is a task-

worker pair whose context is the concatenation of the worker

location, task location, and other relevant side information. Then,

if the context space is only uniformly discretized, high-outcome

context regions will not be correctly identified. This is because if

the uniformly discretized regions are too large, then they will fail

to capture the difference between high-outcome and low-outcome

regions. Therefore, we employ adaptive discretization, which is

the second main component of AOM-MC that enables differentia-

tion of high-outcome and low-outcome regions. Based on the

smoothness of the expected reward and the well-behavedness of

the context space, we utilize the similarity information between

nearby contexts and therefore do not need to learn all of them

individually. That is the idea behind adaptively discretizing, only

when we are confident that the region yields a high expected

return. To that end, the estimates are kept with respect to regions

(i.e., groups of similar assignments) and are updated based on the

observations made on their elements. Below, we formally define

these components and their interrelation.

By Definition 3, there exists a sequence ðXhÞh�0, each element

of which containing Nh nodes whose associated cells form a tree

of partitions of X . The procedure is described as follows: for each
arriving task t, the MCSP observes the available workers and the

arrived joint contexts. The MCSP maintains an active set of leaf

nodes denoted by Lt. For the available workers, we identify the

set of available active leaf nodes, whose regions contain the avail-

able contexts, and denote it by N t. By parðxh;iÞ we denote the

parent of node xh;i. Fig. 1 illustrates the nodes and cells of a 1D

adaptive discretization. For each active leaf node, we maintain an

index which is an upper confidence bound on the maximum

expected performance of the workers with contexts in the region

associated with the node. The index is defined as

gtðxh;iÞ :¼ #tðxh;iÞ þ v1r
h

where the term #tðxh;iÞ is a high probability upper bound on

mðxh;iÞ defined as

#tðxh;iÞ :¼ minfm̂t
1ðxh;iÞ þ ct
1ðxh;iÞ;
m̂t
1ðparðxh;iÞÞ þ ct
1ðparðxh;iÞÞ þ v1r

ðh
1Þg

and ctðxh;iÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

ffiffiffiffiffiffiffiffiffi
2 N
pp

T Þ=Ctðxh;iÞ
q

is the confi-

dence radius, tailored to give high probability upper bounds on

m.4 Here, Ctðxh;iÞ is the number of times a worker associated

Algorithm 1: AOM-MC.

Input: X , ðXhÞh�0, v1, v2, r,K, N , T .
Initialize: C0ðxh;iÞ ¼ 0, m̂0ðxh;iÞ ¼ 0; 8xh;i 2 X ; X0 ¼ X ,
L1 ¼ fx0;1g.
forarriving task t ¼ 1; 2; . . . do:
Observe available workers inWt and their joint contexts X t.

Identify available active leaf nodesN t � Lt and compute the

indices of the workers inWt.

St  Oracleððgtðxt;wÞÞw2Wt
;St;mtÞ

Observe performances of workers in St and collect the reward.

Identify the set of selected nodes Pt.

for xh;i 2 Pt do:

Update m̂tðxh;iÞ as in (2) and Ctðxh;iÞ as in (3).
if ctðxh;iÞ � v1r

h then: " Refine

Ltþ1  Lt [ fxhþ1;j : Nði
 1Þ þ 1 � j � Nig n fxh;ig.
end if

end for

end for

4 Note that here we assume the learner knows K beforehand. In practice,
this is usually the case. The crowdsourcing experiments that we perform allow
for such an assumption. We use K instead of W because, in reality, W can be
in the orders of millions, whileK may be less than 50.
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with a joint context from the cell Xh;i was selected by the

MCSP, formally defined as

Ctðxh;iÞ :¼
Xt
t0¼1

XjStj
k¼1

IfðHt0;k; It0;kÞ ¼ ðh; iÞg

where we denote by ðHt0;k; It0;kÞ level and index of the active

leaf node associated with the cell containing the context of the

kth selected worker at time t0, and let ft;k :¼ xHt;k;It;k
. We

define the total performance accumulated by the algorithm

until round t from selecting workers with contexts associated

with the node xh;i as follows:

ytðxh;iÞ :¼
Xt
t0¼1

XjStj
k¼1

rðxt0;st0 ;kÞIfðHt0;k; It0;kÞ ¼ ðh; iÞg

where we denote by st;k the kth worker selected by the algo-

rithm at round t and rðxt0;st0;kÞ represents the random perfor-

mance of that worker. Consequently, we define the empirical

mean used in the index as

m̂tðxh;iÞ :¼
ytðxh;iÞ=Ctðxh;iÞ for Ctðxh;iÞ > 0

0 otherwise.

�

Note that Ctðxh;iÞ can be larger than t since the MSCP may

choose workers with joint contexts belonging to the same cell

in a certain round. However, it always holds that Ctðxh;iÞ �Pt
t0¼1 mt � Kt. The constants v1 and r are parameters as

described in Definition 3 that are given as input to the algorithm.

Next, we define the index of a worker w 2 Wt at round t.
For this, let ð ~Ht;w; ~It;wÞ represent level and index of the active

leaf node associated with the cell containing the context xt;w,

and let ~ft;w :¼ x ~Ht;w;~It;w
. We define the index of a worker w 2

Wt as

gtðxt;wÞ :¼ gtð~ft;wÞ þNðv1=v2Þv1r ~Ht;w

where the second term guarantees (with high probability) that

gtðxt;wÞ upper bounds mðxt;wÞ.
Remark 4: Since at any round t, a cell associated with an

active leaf node xh;i may contain several contexts of the avail-

able workers, we have gtðxt;wÞ ¼ gtðxt;yÞ when w and y are

two available workers, both of which have contexts that live

in the cell Xh;i. As a consequence, indices of all worker con-

texts inside one cell are equal.

After the indices of the available workers, i.e., fgtðxt;wÞgw2Wt

are computed, they are given as input uuuuuuut to the approximation

oracle in round t to obtain the super arm St � Wt that will be

played in round t.5 At this point, we identify the active leaf nodes
that are “selected,” denote their collection by Pt, and update

their statistics (after these are played and their outcomes are

observed) according to the following rules. For each xh;i 2 Pt:

m̂tðxh;iÞ ¼
Ct
1ðxh;iÞm̂t
1ðxh;iÞ þ rewtðxh;iÞ

Ct
1ðxh;iÞ þ numtðxh;iÞ
(2)

Ctðxh;iÞ ¼ Ct
1ðxh;iÞ þ numtðxh;iÞ: (3)

where

rewtðxh;iÞ :¼
XjStj
k¼1

rðxt0;st0 ;kÞIfðHt0;k; It0;kÞ ¼ ðh; iÞg

numtðxh;iÞ :¼
XjStj
k¼1

IfðHt0;k; It0;kÞ ¼ ðh; iÞg:

Statistics of the other active leaf nodes do not change. Sub-

sequently, for each node xh;i 2 Pt, we decide whether or not

to expand it into N children nodes, according to the following

condition:

� Refine. If ctðxh;iÞ � v1r
h, then the node xh;i is

expanded into N children nodes fxhþ1;j : Nði
 1Þ þ
1 � j � Nig which are added to the set of active leaves,
whereas xh;i is removed from it.

If the above condition is not satisfied, we continue. Basi-
cally, we refine the partitions when we are confident enough
about the m values inside that cell. Fig. 2 visualizes the steps
of our algorithm. Also, see the table of notation in Appen-
dix C for a summarized terminology.

V. THEORETICAL PERFORMANCE ANALYSIS

A. Context Dependent Finite Time Upper Bounds on the

Regret

Below, we state the main theoretical result of the paper,

which shows that for a fixed time horizon T and a sequence of

worker arrivals, the regret incurred by AOM-MC is sublinear

in T and depends on the approximate optimality dimension of

Fig. 1. Illustration of adaptive discretization in the case when X ¼ ½0; 1�.

5 The workers are randomly chosen in the first round.
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the context space. The proof depends on several auxiliary

results, which we state and prove in the Appendix A.

Theorem 1: Fix T > 0. Given the parameters of the prob-

lem 0 < a � 1, N 2 N, K 2 N, B > 0 and 0 < v2 � 1 �
v1, define �D ¼ Duðf; au�minÞ and fðrÞ ¼ cr, where c ¼
BKð6Nv1=v2 þ 2Þv1=v2. Then, for any D1 > �D, there exists

Q ¼ QðX ; u;m;au�min; cÞ > 0 (independent of T ), for which
the a-regret incurred by AOM-MC is at most

ðC1 þ C2Þ � T 1
 1
D1þ2 � ðlog ðTv3ÞÞ

1
D1þ2;

with probability at least 1
 1=T , where C1 :¼ 2QBK
ð6Nv1=v2 þ 2Þ v2


D1

v1ðr
1
1Þ and C2 :¼ KBð6Nv1=v2 þ 2Þv1.
Sketch of proof. The high-level intuition of the proof is as

follows. First, we prove that the expected outcome of any

given node is bounded above by its index. Then, using this

result, we proceed by computing upper bounds on the actual

deviation of the index of any given node from its true mean

(expected value), and we give upper bounds on the maximum

number of times a node can be selected before its expansion.

We then show that the index of any given worker is an upper

bound on the true mean associated with that worker and use

this to obtain an upper bound on the simple regret. After this

point, we use a technical result that relates the simple regret

expressed in terms of the tree levels with the approximate opti-

mality dimension. So far, the idea of the proof is clear, and the

natural subsequent step would be to give an upper bound on

the expected regret. However, to do this, we need to express

the summation over rounds in terms of something else, lest we

end up with linear bounds. For this, we split the summation

over levels of the context tree and define a specific level of the

tree which, using the aforementioned relation with the approx-

imate optimality dimension, yields sublinear regret bounds. tu
Theorem 1 shows that AOM-MC achieves ~OðT ð �Dþ1Þ=ð �Dþ2Þþ�Þ

regret for any � > 0. This implies that the time-averaged regret

converges to 0 at a rate that depends on the optimality dimension

of the context space, making AOM-MC’s average reward opti-

mal in the long-run. Moreover, we always have �D � D, where

the latter represents the context dimension. Indeed, based on the

context arrival and reward structure �D can be smaller than D.

On the other hand, in our setup, the CC-MAB algorithm in [43]

will incur ~OðT ð2þDÞ=ð3þDÞÞ regret, which is strictly larger than

that of AOM-MC. In Section VI, we provide an extensive set of

experimental evidence that corroborate our theoretical findings.

B. Computation and Memory Overhead

The required memory to run AOM-MC can be estimated by

inspecting the number of statistics the algorithm updates. Note

that in round t, the algorithm updates and stores Ctðxh;iÞ and
m̂tðxh;iÞ, for at most NK nodes from the set N t. This follows

because we cannot expand more than K nodes in any given

round, and each node will have N children. So in T rounds,

the required storage would be linear in NKT , i.e., OðNKT Þ.
Note that this is a loose upper bound because the algorithm

only needs the leaf nodes and their parents’ statistics. Thus,

other nodes’ statistics can be discarded from memory.

As for the time complexity, note that in each round t, the
algorithm has to observe and go through every available worker

inWt. Then, using linear search and using the fact that the total

number of nodes by round t is upper bounded by OðNKtÞ, we
would have a time complexity of OðjWtjNKtÞ to identify the

node to which each worker’s joint task-worker context belongs.

However, using a binary search-like algorithm that finds the

appropriate leaf node for each context by starting from the root

node and traversing the tree, we get a time complexity of

OðjWtjlog ðNKtÞÞ. Furthermore, in the case where the oracle

greedily selects the a-optimal assignments according to the

given indices, it would have to sort these indices out in every

round, which would takeOðjWtjlog jWtjÞ time using the quick

sort algorithm. At the end of the round, the algorithm goes

through the selected nodes in Pt to update their statistics and

whether to refine them. This takes no more than OðmtÞ time.

Therefore, the time complexity of AOM-MC in T rounds is

O
X
t�T
jWtjlog ðNKtÞ þ jWtjlog jWtj þmtð Þ

 !

¼O WmaxT logT þWmaxlogWmaxTð Þ;

where Wmax :¼ maxt�TWt. As we can see, the time com-

plexity is log-linear in the total number of rounds T and the

maximum number of available workers in each round.

VI. NUMERICAL RESULTS

We perform three simulations to visually illustrate adaptive

discretization, its importance and also to show that AOM-MC

beats the current state-of-the-art algorithm for the CCV-MAB

setting, CC-MAB of [43]. In the first simulation, we visualize

the discretizations AOM-MC makes over a 2D context space,

clearly showing that AOM-MC discretizes regions with high

outcomes more than those with low outcomes. In the second

simulation, we demonstrate the advantage of adaptive discreti-

zation in the NP-hard dynamic probabilistic maximum cover-

age problem by comparing AOM-MC with a version of CUCB

[22] running on a pre-defined uniform discretization of the con-

text space. Lastly, in the third simulation, we use location data

Fig. 2. Illustration of the AOM-MC algorithm. Once task t arrives, the learner
identifiesWt and N t and thereby computes the indices uuuuuuut which he then feeds
to the oracle. The oracle then returns the a-optimal worker assignment, which
the learner plays and from which he consequently observes semi-bandit feed-
back. Using this feedback, the indices of the nodes in Pt corresponding to the
played assignments are updated. Finally, the learner decides whether any nodes
inPt need to be expanded and then proceeds to the next round.
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from the Foursquare dataset [56] to run a time and

location-dependent crowdsourcing simulation with realistic

high-dimensional contexts and show that AOM-MC vastly out-

performs CC-MAB. We ran all our simulations on a desktop

computer equipped with an i7-6800 K, a GTX-1080Ti, and

32 GB of RAM. We provide the code for our algorithm, the

implementation of all other used algorithms, as well as the

code to generate the plots in our GitHub repository at github.

com/Bilkent-CYBORG/AOM-MC.

A. Simulation I: Visualizing Adaptive Discretization

Setup: In this simulation, we consider a simple CCV-MAB

problem where the number of arriving workers is Poisson dis-

tributed with mean 350 and each task-worker pair has a joint

2D context (i.e., X ¼ ½0; 1�2). Moreover, in each round, the

MCSP must pick 100 workers (i.e., the task budget is bt ¼ 100
and each worker costs et ¼ 1) to assign to the arrived task.

Given a task-worker pair with joint context x whose compo-

nents are x1 and x2, respectively, the random quality of x is a

Bernoulli random variable with probability given by qðxÞ ¼
ð1þ sin ð5x1Þ sin ð7x2ÞÞ2=4. Furthermore, the acceptance

probability, aðxÞ, is always 1. Finally, the reward is a linear

sum of all base arm performances.

Algorithms: We only run AOM-MC as it is the only algo-

rithm with adaptive discretization. We set set v1 ¼
ffiffiffi
2
p

; v2 ¼
1; r ¼ 0:5, and N ¼ 22 ¼ 4. The initial (root) context cell,

X0;1, is a two dimensional unit hypercube centered at

ð0:5; 0:5Þ.
Results: We first run the simulation with uniform context

arrivals, where the context of each task-worker pair, x, is
picked uniformly from ½0; 1�2. Next, we run the simulation 5

times using AOM-MC for 300000 rounds and average over the

5 runs. In Fig. 3, we plot the regions (squares) of the leaves by

the end of the simulation over a heatmap of the expected out-

come function. First, notice that each white square corresponds

to the region of a leaf, and the smaller the square, the deeper

the node is in the tree, and thus the more the algorithm

focused on and discretized the node’s surrounding context

region. Second, notice that the three regions of the context

space corresponding to high-outcome, shown in yellow,

have the smallest squares and are thus discretized the most.

More specifically, AOM-MC discretized context regions cor-

responding to high outcomes one level deeper than those cor-

responding to low outcomes.

We then run the same simulation with non-uniform context

arrivals, where x is sampled from a weighted mixture of two

Gaussian distributions, one centered at the first major high-out-

come region, (0.314,0.224), and the other centered at the sec-

ond major high-outcome region, ð0:942; 0:673Þ, with weights

0.6 and 0.4, respectively. Both distributions have a covariance

matrix of
0:02 0
0 0:01

� �
. Note that such a non-uniform arrival

is equivalent to many high-quality worker arrivals and, conse-

quently, a small number of low-quality worker arrivals. Fig. 4

shows the plot of the leaf regions at the end of the simulation

over the heatmap of the outcome function. Compared with uni-

form arrivals, low-outcome (blue) regions are discretized less,

and high-outcome regions are discretized more, evident by the

larger and smaller node regions (white squares), respectively.

Furthermore, the nodes corresponding to high-outcome regions

are three levels deeper than those corresponding to low-out-

come regions. This shows that in a setting where there is a

larger proportion of high-outcome to low-performance workers

(e.g., skilled workers in crowdsourcing), AOM-MC takes

advantage of the large number of high-performance worker

arrivals and can very finely discretize the regions correspond-

ing to them.

Since in many crowdsourcing problems contexts (including

location) are continuous, adaptive discretization would help

AOM-MC accurately identify high-quality context regions

and thus pair up optimal workers with each arriving task.

Fig. 3. Visualization of the regions of the leaves of AOM-MC by the end of
Simulation I with uniform arrivals plotted over the heatmap of the expected
outcome function.

Fig. 4. Visualization of the regions of the leaves of AOM-MC by the end of
Simulation I with non-uniform arrivals plotted over the heatmap of the
expected outcome function.

ELAHI et al.: ONLINE CONTEXT-AWARE TASK ASSIGNMENT IN MOBILE CROWDSOURCING VIA ADAPTIVE DISCRETIZATION 315

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 16,2023 at 10:55:56 UTC from IEEE Xplore.  Restrictions apply. 

github.com/Bilkent-CYBORG/AOM-MC
github.com/Bilkent-CYBORG/AOM-MC


B. Simulation II: Adaptive Versus Uniform Discretization

Setup: In this simulation, we illustrate the advantages of

adaptive discretization over uniform discretization by consid-
ering the dynamic probabilistic maximum coverage problem

(DPMC). In the DPMC problem, the goal in each round is to
select a subset of the left nodes of a bipartite graph to trigger

as many right nodes, where a left node triggers a right node

with a probability given by the edge connecting them. In the
context of crowdsourcing, left nodes can be thought of as sub-

tasks and right nodes as workers. Thus, the goal is to assign
sub-tasks to workers optimally.

More specifically, in each round, the number of left and right

nodes are sampled from a Poisson distribution with mean 50 and

300, respectively. Then, each left node is connected to a random

number of right nodes, where the number of nodes is picked uni-

formly from [1,4]. Each edge has a 3D context picked uniformly

from ½0; 1�3, and given edge context x with components x1, x2,

and x3, the probability of the right node connected to the edge

being triggered given that the left node is picked is given by

qðxÞ ¼ Afðð1þ sin ð7x1Þ cos ð8x2Þ sin ð9x3ÞÞ=2Þ, where f is

the PDF of a zero-mean Gaussian distribution with standard

deviation 0.15; andA ¼ 3
ffiffiffiffiffiffiffiffi
2p=

p
20 is the normalizing constant.

In each round, the learner observes the arriving left nodes,

right nodes, and edges and must choose a subset of K many

left nodes, where K is randomly sampled from [4,10]. After

the learner picks a subset of left nodes, Bernoulli random vari-

ables with probabilities given by the outgoing edges of the

picked left nodes are sampled, and the triggered right nodes

are determined. Then, the final reward is the number of trig-

gered right nodes. Note that even if a right node is triggered

by multiple left nodes (i.e., the Bernoulli samples of multiple

edges connected to the right node are 1), the right node is only

counted once in the final reward.

Algorithms: We run this simulation using our algorithm and

a modified version of CUCB adapted to the volatile and con-

textual nature of this simulation setting. The details of each

algorithm are given below.

AOM-MC: We set v1 ¼
ffiffiffi
3
p

; v2 ¼ 1; r ¼ 0:5, and N ¼
23 ¼ 8. The initial (root) context cell, X0;1, is a three dimen-

sional unit hypercube centered at ð0:5; 0:5; 0:5Þ. We use TIM+

as the oracle with � ¼ 0:1 and l ¼ 1 [57]. The TIM+ algorithm

is an approximate algorithm that solves the DPMC problem.

Notice that the DPMC problem is NP-hard in general, and

thus even with all edge probabilities known, no polynomial-

time algorithm exists for determining which left nodes to

select. Instead, the TIM+ algorithm is an ða;bÞ-approximate

polynomial-time algorithm, with a ¼ 1
 1=e
 � and b ¼
1
 3n
l, meaning that its solution is guaranteed to be a times

the true solution b portion of the time, with 0 < a;b < 1.
TIM+ takes as input the graph and also the weight (i.e, proba-

bility) of each edge, and outputs the set of left nodes to select.

In the context of our algorithm, the TIM+ algorithm acts as

our oracle. In other words, the probabilities of the edges come

from the indices computed by our algorithm and act as esti-

mate probabilities. Notice that even though TIM+ is an

(a;b)-oracle and not an a-oracle, AOM-MC has no problems

using it in practice, as we will see in the results section. Lastly,

since AOM-MC indices are in general not smaller than one, we

normalize them to [0,1] before passing them to TIM+. This nor-

malization is monotone and thus the context with the highest

index will still have the highest index after normalization.

CUCB: CUCB is a non-contextual combinatorial MAB

algorithm and thus cannot directly be used for the DPMC prob-

lem [22]. Instead, we discretize the context space into small

regions (cubes) a priori and treat each region as an arm. For

example, if we discretize each dimension into two parts

([0.0,0.5] and [0.5,1.0]), then in total the 3D context space will

be discretized into eight cubes of length 0.5. Then, each one of

the eight cubes will be treated as an arm by CUCB. More spe-

cifically, for each sub-task-worker pair (i.e., edge), we feed to

TIM+ the index (i.e., �m in [22]) of the region to which the sub-

task-worker’s joint context belongs. In our simulation, we run

different instances of CUCB with the following discretization

per dimension (disc./dim) factors: f4; 8; 16; 32; 64; 128g.
Results: We run the simulation for 40000 rounds and aver-

age the results over 5 independent runs. We track the reward

of each round for each algorithm and cumulatively add them

up to get Fig. 5. AOM-MC outperforms all variations of

CUCB starting from t ¼ 14000 until the end of the simulation.

Its slow start can be attributed to the exploration needed at the

beginning of the simulation due to AOM-MC’s tree starting

with just one node whose region is ½0; 1�3. As more nodes are

created, and AOM-MC gains a better idea about the estimated

outcome of each node, it explores less and begins to dominate

over CUCB in terms of reward.

Looking at the different CUCB instances, we notice that at

first, there is an increase in reward when going from 4 to 8

disc./dim, but then a drop in reward when going to 16 disc./

dim, with further increases in discretization decreasing the

reward even more. As discretizations are increased, CUCB

tends to explore more, thus hindering its performance. For

example, with 128 disc/dim, there are 1283 ¼ 2097152 many

regions (i.e., arms from the point of view of CUCB), and given

that there are on average ð1þ 4Þ=2	 50 ¼ 125 edges in each

round, we would expect CUCB to have played a base arm

from each region once after 2097152=125 � 16777 rounds! In
short, CUCB with 128 disc./dim is likely exploring for the

entirety of the simulation. Furthermore, although AOM-MC’s

Fig. 5. The cumulative rewards of AOM-MC and different instances of
CUCB for Simulation II.
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deepest nodes reached a height of h ¼ 7, thus having the same

length as the cubes of CUCB with 128 disc./dim, AOM-MC

performs much better thanks to its adaptive discretization,

because of which it only discretizes high-outcome regions.

In conclusion, even with a pre-defined discretization tuned a

priori, something not possible in real-life online settings,

CUCB is still beaten by AOM-MC’s adaptive discretization.

C. Simulation III: Time and Location-Dependent

Crowdsourcing Simulation Using Real-Life Data

Setup: In our last simulation, we consider a time and loca-

tion-dependent crowdsourcing setting where the goal is to

assign the best workers to arriving tasks. In each round, a task

arrives with a 2D location (longitude and latitude), a prefer-

ence vector ½0; 1�2, and the time when the task was posted in

the unit of seconds since the start of the current day, scaled to

[0,1]. Thus, midnight is mapped to 0, and 23:59:59 is mapped

to 1. Furthermore, a group of T0 many tasks arrives within the

same hour. In other words, tasks 1; 2; . . . ; T0 arrive between

00:00:00 and 00:59:59. Then, the next group of T0 many tasks

(T0 þ 1; . . . ; 2T0) arrive between 01:00:00 and 01:59:59. In

our simulation, we set T0 ¼ 3 and also randomly sample the

arrival time from a uniform distribution.

Each task has a different budget of workers assigned to it,

and after a task arrives, available workers are revealed to the

learner. Each worker also has a 2D location as well as a 2D

preference vector. The learner then picks as many workers as

the task budget allows, after which the workers either reject or

accept the task. We assume that workers are most likely to

accept a task when it is daytime and least likely to do so when

it is nighttime. Mathematically, given that t is the scaled arriv-

ing time of an arrived task, we define a worker accepting a

task as a Bernoulli random variable with probability

aðtÞ :¼ 1þ sin ð2pt 
 p
2Þ

2
: (4)

Notice that the acceptance probability is small when t is close

to 0 or 1, which both correspond to nighttime, and it is large

when t is close to 0.5, which corresponds to noon. Then, the

workers who accepted the task start working on the task, each

either completing it or not. Then, given a joint task-worker

context (including time of day) x 2 X ¼ ½0; 1�9, we define the
performance of a worker who has accepted the task as Ber-

noulli random variable with probability given by the cosine

similarity between the task and worker preference vectors,

scaled to [0,1]. Formally, given that pðxÞ is the expected per-

formance (i.e., probability of successfully completing the

task) of any worker, we have

pðxÞ¼

1þ
hxtask pref. ;xworker pref.i

xtask pref.

��� ��� xworker pref.

��� ���
0
@

1
A=2 if worker accepts task;

0 otherwise.

8>><
>>:

(5)

We sample task t’s budget, bt, from f3; 4; 5; 6; 7; 8g, assume

each worker has a fixed cost of et ¼ 1, and also sample the

task and worker preferences as well as the worker location

uniformly from ½0; 1�2, but we use the Foursquare dataset for

the task locations. The Foursquare dataset contains check-in

data from New York City (227,428 check-ins) and Tokyo

(573,703 check-ins) for a period of 10 months from April

2012 to February 2013 [56]. Each check-in comes with a loca-

tion tag as well as the time of the check-in. In our simulation,

we sample the task locations from the Tokyo check-in loca-

tions and scale both the longitude and latitude to [0,1].

Finally, to model a realistic crowdsourcing reward function

that considers the distance between the worker and task in a

complex and non-uniform manner, we define our reward func-

tion as the mutual information between the task location and

successful worker locations. More specifically, we first discre-

tize the location space by randomly sampling 14450 points

from ½0; 1�2 to get a list of discretized scaled location points.

We chose 14450 because it was the largest number of discreti-

zations we could perform before our PC ran out of memory.

Of the 14450 discretized (scaled) location points, we reserve

80% of them for worker locations and the remaining 20% for

task locations. Then, we perform the following step to gener-

ate the data for each arriving task and its workers:

1) Sample the task’s location from the Foursquare dataset

and sample the task’s preference vector uniformly from

½0; 1�2.
2) Uniformly sample K many worker locations from the

worker-reserved discretized location points that are in

the disk centered at the task location with radius
ffiffiffi
2
p

=4,
where K is sampled from a Poisson distribution with

mean 50. To do this, we first sample 5 K worker loca-

tions from the worker-reserved discretized location

points and then pick K that are inside the disk. If the

number of workers inside the disk is less than K, we

resample. We limit worker locations to the disk to simu-

late a realistic location-dependent crowdsourcing set-

ting where only workers close enough to the task are

available to be selected. Then, we sample the available

worker preferences from ½0; 1�2.
3) Save the task-reserved discretized location points inside

the square of length
ffiffiffi
2
p

=8 centered at the task location.

These points will be later used to compute the reward.

Fig. 6 shows a visualization of the relevant task and worker
locations for a random task.

Then, after the learner has observed and selected workers

for a task, the reward is determined as follows: First, the

worker acceptances are sampled from Bernoulli distributions

with probabilities given in (4). Then, the worker performances

are sampled from Bernoulli distributions with probabilities

given in (5). Finally, assuming that a function from a Gaussian

Process (GP) dictates the relationship between different loca-

tions in the location space, the mutual information between

the task square discretization points and the successful work-

ers’ discretized location points is computed as the reward.

More specifically, in our simulations, we assume that the loca-

tion relationship is explained by a function sampled from
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GPð0; kðx; x0ÞÞ, where k is the Matern kernel with lengthscale

and variance 0.1. Note that this assumption is intuitive because

the Matern kernel is decreasing in the distance between x and

x0, similar to how the farther the workers are from a task in a

location-dependent crowdsourcing setting, the lower the final

performance of them. To find the mutual information between

the location of a set of successful workers and task square dis-

cretizations, we compute the covariance matrix of their loca-

tions. Notice that our discretized location points follow a

multi-variate Gaussian distribution with zero mean and covari-

ance matrix computed using the Matern kernel because of our

GP assumption. Therefore, mathematically, the mutual infor-

mation between the successful workers’ locations and the task

square discretizations is 1
2 log ðdetSX detSY

detSX;Y
Þ; where SX is the

covariance matrix of the successful workers’ discretized loca-

tion points, SY is the covariance matrix of the task square dis-

cretizations, and SX;Y is the joint covariance matrix of the

successful workers’ discretized location points and the task

square discretizations.

Algorithms: We run this simulation using our algorithm,

CC-MAB, modified versions of CUCB and �n-greedy, and a

random algorithm.

AOM-MC: We set v1 ¼
ffiffiffi
9
p

; v2 ¼ 1; r ¼ 0:5, and N ¼
29 ¼ 512. The initial (root) context cell, X0;1, is a nine dimen-

sional unit hypercube. Furthermore, we use a marginal reward

maximizing greedy oracle that takes as input the indices of

each worker, picks the worker whose index would maximize

the reward function (i.e., maximizes the index times the infor-

mation gain between the worker’s location and the task square

discretizations), and then picks the next worker and so on.

CC-MAB: CC-MAB is another combinatorial contextual

volatile bandit algorithm, but unlike AOM-MC, it starts with a

pre-discretized context space and never refines its discretiza-

tions. Also, unlike AOM-MC, CC-MAB does not use a general

a-oracle and instead has its own marginal reward maximizing

greedy oracle that in our setup is an ð1
 1=eÞ-oracle. Then,
since we run our simulations for 3000 rounds, we set hT ¼
3000

1
3ð1
1=eÞþ9

l m
¼ 3. Hence, each hypercube has a length of

1=ht ¼ 1=3.

CUCB: We also use the modified version of CUCB as

described in Simulation II. CUCB uses the same marginal

reward maximizing oracle as AOM-MC. We run different

instances of CUCB with the following discretization per

dimension (disc./dim) factors: f3; 4g.
�n-greedy: �n-greedy is a simple single-armed bandit algo-

rithm that randomly explores and exploits, where the probabil-

ity of random exploration decreases as the round number

increases [10]. Since our crowdsourcing setting is combinato-

rial and volatile, the original �n-greedy as described in [10] can-
not be used. Instead, we modify it similar to how we modified

CUCB: we discretize the context space into hypercubes and

treat each hypercube as an arm. We set c ¼ 0:1 and d ¼ 0:2
and we also run different instances of �n-greedy with the fol-

lowing discretization per dimension (disc./dim) factors: f3; 4g.
Random: The random algorithm picks random workers to

assign to each task.

Results:We run the simulation for 5 tries and report the cumu-

lative reward in Fig. 7. Unsurprisingly, Random and both

�n-greedy algorithms perform the worst. Note that �n-greedy does
not use any exact or approximate oracle and simply picks workers

from hypercubes with the largest indices or randomly, depending

on whether it is exploiting or exploring, respectively. Therefore, it

is oblivious to any information about the problem instance. For

example, it may pick two very close workers, which would be

suboptimal in our crowdsourcing setup. This contrasts to CUCB,

which uses an ð1
 1=eÞ-approximate oracle, helping it perform

much better than �n-greedy, but only with 3 disc./dim. The reason

for the performance discrepancy between CUCBwith 3 disc./dim

and CUCBwith 4 disc./dim is that when each dimension is discre-

tized into 4 segments, then in total, there are 49 ¼ 262144 hyper-
cubes. Thus, given that the expected number of workers in each

Fig. 6. A visualization of the relevant locations for a random task and its
workers in Simulation III. Worker locations are the location of all workers
that were sampled for the task, whereas available worker locations are the
location of available workers (i.e., workers whose distances to the task are less
than

ffiffiffi
2
p

=4.). Task square discretization indicates the task-reserved discretized
location points inside the blue square that is centered at the task location with

length
ffiffiffi
2
p

=8.

Fig. 7. The cumulative rewards of AOM-MC, CC-MAB, CUCB, �n-greedy,
and Random in Simulation III.
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round is 50, CUCB would require 262144=50 � 5243 rounds to

explore a worker from every hypercube just once. In other words,

it is exploring for the entire duration of the simulation. However,

when there are 3 discretizations per dimension, CUCB only needs

394 rounds to finish its exploration.6

Surprisingly, CC-MAB also performs among the worst and

just as badly as Random. This is surprising because CC-MAB

discretizes each dimension of the context space into 3 segments,

just like the favorable-performing CUCB with 3 disc./dim

(green in Fig. 7), yet it performs much worse than CUCB.More-

over, both CC-MAB and CUCB use the same marginal reward

maximizing oracle. In fact, the only difference between them is

that CC-MAB performs exploration by assembling a set of

under-explored arms and randomly selecting arms from them.

On the other hand, CUCB and our algorithm use a UCB term to

account for exploration. Thus, it appears that for this crowd-

sourcing setup, a UCB-based exploration is more apt.

Compared with the other algorithms, AOM-MC achieves a

higher final cumulative reward and quickly outperforms them

from the first few hundred rounds. AOM-MC performs better

than CUCB with 3 disc./dim because of CUCB’s coarse dis-

cretization. CUCB only discretizes each dimension into 3

parts; hence it cannot tell the difference between a context

with its first element as 0.7 and another with its first element

as 0.95. Moreover, its discretization is fixed and does not

improve throughout the simulation. Thus, CUCB can never

distinguish between the two contexts mentioned above and

performs suboptimally compared with AOM-MC, which

adaptively discretizes the context space. Even though at the

beginning of the simulation, AOM-MC starts with a very

coarse discretization of just one hypercube for the entire con-

text space, it quickly discretizes the context regions where it

believes high-performance workers to be. In fact, its tree

reaches a height of h ¼ 2 just after 42 rounds, after which the

length of the hypercubes of the leaf nodes is 1=4, which is

smaller than those of CC-MAB and CUCB with 3 disc./dim.

Lastly, even though when an AOM-MC node is refined, it is

split into 512 children nodes, AOM-MC ended up with fewer

nodes by the end of the simulation than what CC-MAB started

(and ended) with (16560 versus 39 ¼ 19683). This is because
AOM-MC only refines nodes whose region it believes to be a

high-outcome region. In conclusion, not only does AOM-MC

substantially outperform the other algorithms, but it also does

so by storing information about fewer hypercubes and thus

using less memory.

VII. CONCLUSION

In this paper, we proposed AOM-MC, an online learning

algorithm that solves the CCV-MAB problem and incurs

sublinear regret. We also proved the regret bounds for our

algorithm and offered time- and space-complexity analy-

ses. The CCV-MAB framework that we considered is very gen-

eral in that it can accommodate many real-life scenarios and

considermany features.Most importantly, we described in detail

how the CCV-MAB framework could be applied to the problem

of mobile crowdsourcing and presented the results of our exten-

sive simulations. Our simulations illustrated the advantage of

adaptive discretization compared with uniform discretization

and showcased how our algorithm outperforms the state-of-the-

art MAB algorithm and baseline crowdsourcing algorithms.
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