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A b s t r a c t .  

A new algorithm for the ~oo solution of overdetermined linear systems is given. The 
algorithm is based on the application of quadratic penalty functions to a primal linear 
programming formulation of the ~ problem. The minimizers of the quadratic penalty 
function generate piecewise-linear non-interior paths to the set of goo solutions. It is 
shown that the entire set of ~ solutions is obtained from the paths for sufficiently small 
values of a scalar parameter. This leads to a finite penalty/continuation algorithm for 
~ problems. The algorithm is implemented and extensively tested using random and 
function approximation problems. Comparisons with the Barrodale-Phillips simplex 
based algorithm and the more recent predictor-corrector primal-dual interior point 
algorithm are given. The results indicate that the new algorithm shows a promising 
performance on random (non-function approximation) problems. 
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1 I n t r o d u c t i o n .  

The purpose of  this paper  is to give a new finite algori thm for the problem 

min I l A x -  bi]oo-- min max l a T x -  bil 
x E R  n x E R  n i = l . . m  

where A E T~ m• is assumed to have rank n with no rows or columns identically 
zero, and b E ~ m .  It  is well-known [19] tha t  [e~] is equivalent to  the following 
linear p rogram 

min 
[LINFLP] s.t. 

with the corresponding dual problem 

Y 
A x  - ye  <_ b 
A x  + ye > b, 

* Received August 1996. Revised March 1997. Communicated by Kaj Madsen. 
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m a x  bT (v -- u)  

[LINFLD] s.t. A T ( v  -- u)  = 0 
eT(u + v) ---- 1 

U , V ~ 0  

where e is an m-vector with all components unity. 
The problem has a wide range of applications, including time series, function 

approximation and data fitting analysis. As a result, efficient ways to solve it 
were the subject of many papers (see for example [18]). The first attempts seem 
to have been made by statisticians as the problem arises frequently in data fitting 
analysis. More efficient ways, however, were designed when it was realized that 
the problem is equivalent to a linear program, and, hence it can be solved via 
any linear programming method. The first numerically stable algorithm for the 
solution of the ~ problem via the Stiefel exchange method was given by Bar- 
tels and Golub [1]. Barrodale and Phillips [2] designed a simplex method that 
exploits the special structure of the coefficient matrix. Alternatively, Bartels, 
Conn and Charalambous [3] used a direct nondifferentiable descent method. 
After Karmarkar's outstanding paper which started the area of interior-point 
methods, Ruzinsky and Olsen [17] used the same ideas to design a polynomial 
algorithm for the g~ problem. Coleman and Li [6] used a formulation of the ~ 
problem based upon the null space of A T to propose a globally and quadrati- 
cally convergent algorithm. Later, subsequent developments in the interior-point 
area led to the method of Zhang [19], where the predictor-corrector primal-dual 
interior point approach was adapted to the linear ~oo problems. Zhang's inte- 
rior point algorithm also possesses local quadratic convergence properties under 
nondegeneracy assumptions. 

The approach of the present paper is based upon recent ideas of Pmar [16] 
where a quadratic penalty function method was developed to solve a standard 
dual linear program with only inequality constraints. This was inspired by re- 
lated work from Madsen and Nielsen [11] and Madsen, Nielsen and Pmar [13] 
where the gl solution of overdetermined linear systems was studied and later 
applied to linear programming. However, the ideas of [11, 13] are based on a 
smoothing approximation of the ~1 function, which is different from the subject 
of the present paper. 

The new method consists of solving a quadratic penalty subproblem for smaller 
and smaller values of a scalar parameter. In theory, a solution to the original 
problem could be obtained from a solution to the unconstrained problem when 
the parameter tends to zero. However, the key to a stable and efficient algorithm 
is that the parameter tends to zero in a numerically well-defined manner. This is 
a consequence of the fact that there is a threshold value where optimal solutions 
to the original problem can be found from the solutions of the penalty problem 
by solving a linear system. This property is essential both for the efficiency 
and the numerical stability of the designed algorithm. The algorithm generates 
a sequence of non-interior iterates that satisfies primal feasibility only upon 
termination. The purpose of the present paper is to specialize the ideas of [16] 
to the ~ problem. In particular, we describe the properties of the quadratic 
penalty function as applied to this problem. Although these results are obtained 
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from the analysis of [16], mutatis mutandis, they are reiterated because (1) the 
ideas of [16] are fairly recent and not well-known, (2) we wish to make the paper 
self-contained. We redefine the penalty algorithm in the context of the linear 
too problem and prove its finite convergence. The algorithm is implemented in a 
software system referred to as LINFSOL, extensively tested, and is compared with 
the Barrodale-Phillips simplex algorithm and the predictor-corrector interior 
point algorithm of Zhang. 

Our algorithm is not the first penalty function algorithm to be proposed for 
t ~  problems. Joe and Bartels [9] and Bartels, Conn and Li [4] both used an 
exact nondifferentiable penalty function approach to solve the problem. Joe 
and Bartels use the dual formulation of the problem to apply the exact penalty 
function whereas Bartels, Corm and Li use a primal approach. Our ideas differ 
from the above in three important aspects: 

. We use a differentiable quadratic penalty function which was long forgotten 
due to potential numerical instabilities. To the contrary, we demonstrate 
the numerical stability and efficiency of this approach. 

2. We utilize a finitely convergent Newton method to solve the penalty sub- 
problems. 

. We exploit the piecewise linear dependence of the minimizers of the penalty 
function on the penalty parameter to devise a penalty continuation algo- 
rithm. 

The rest of the paper is organized as follows. In Section 2 we will expose 
the fundamental properties of quadratic penalty functions applied to the too 
problem. In Section 3 we will present the penalty continuation algorithm based 
on these properties. Section 4 is devoted to the finite convergence analysis. 
Finally, in Section 5 we give experimental results. 

2 A quadrat ic  pena l ty  f u n c t i o n  a p p r o a c h .  

Let us consider the following quadratic penalty function 

F(x, y, t) : Sy -{- XrlT(X, y)O1 (x, y)r  1 (x, y) -}- I r T ( x ,  y)O2(X, y)r2(x, y), 

where r l (x ,y )  = A x -  y e -  b and r2(x,y) = Ax  + y e -  b and 01(x ,y )  and 
02(x,y) are m x m diagonal matrices such that 01 = diag(Ol), 02 = diag(02) 
with 

1 i f a T x - - y > b i  
91, (x, y) = 0 otherwise, 

and 
1 i f a T x + y < b i  

9:,, (x, y) = 0 otherwise. 

We will be concerned with the unconstrained minimization problem: 
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[LINFCP] 
min F ( x , y , t )  

x E R n , y E R  

for decreasing values of t. It is well-known that  the unconstrained minimization 
of F(x,  y, t) is well defined [5]. 

For ease of notation let z be the n + 1 vector with zi -- xi , i  = 1 , . . . ,  n and 
zn+l -- y, and denote by X the set of optimal vectors z to [LINFLP], and by 
Mt the set of minimizers of F(x,  y, t) for a fixed value of t. Let also zt = (xt,  
Yt) denote a minimizer of F(x,  y, t).  

2.1 Properties of F and its minimizers. 

In this section, we give a characterization of the set of minimizers of F for fixed 
t > 0. It is obvious that  F(x,  y, t) is composed of a finite number of quadratic 
functions. In each domain 79 C_ R n+l where 01(x,y),O2(x,y) are constant F 
is equal to a specific quadratic function. These domains are separated by the 
union of hyperplanes 

B - - { ( x , y )  e R n + i ;  3 i :  a T x - - y - - b i = O  V a T x T y - - b i = O } .  

So, for a given pair (x, y),  the corresponding binary vectors 01 (x, y), 02 (x, y) are 
found, and F is represented by Qo on the subset, 

Co = d{(~ ,0)  ~ Rn+l;01(~,O) = 01 ^ 02(~,0) = 02}, 

where Q0 is defined as follows: 

Qa(Sc, O, t ) = F(x,  y, t) + FT (:~ -- x) + FT (O -- y) 

- x)TFxx(  - + - y)TF  (O - y )  

1 ^ - F x , ( O  - y )  + - y ) r  F ,  - 

with 

OF(x, y, t) _ t + eT(Ol  q- 02)ey + eT(02 -- Ol)Ax + eT(Ol  -- O2)b, Fu - Oy 

OF(x, y, t) _ A T ( o  2 _ O1)ey + AT(01 A- 02)Ax  - AT(01 d- 02)5, 
Fx = Ox 

Fxy - 02F(x 'y ' t )  -= AT(02 -- 01)e, 
- -  OxOy 

02F(x ' y ' t )  = e T  ( 0 2  - -  O1)A, 
Fvx -- OyOx 

02F(x,y ,  t) _ AT(o  1 A- Oe)A, 
F~x - Ox 2 

02F(x, y, t) _ eT(O 1 -t- 02)e. 
Fuu - Oy 2 

F. We refer to the gradient as the (n + 1) vector [F,], and the Hessian as the 
[F** F| ( n + l )  • ( n + l )  symmetric positive (semi)definite matrix P = iF** F**J that can 
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be written as j T O A  where J - - -  [A Ae e] and O =  [ol o] We also denote by 
' 0 0 2  " 

Af(P) or No the null space of P .  Let b = [~b]. Then the necessary condition 
for a minimizer zt of F can be written compactly as 

(2.1) - ten+l + ATOD = Pzt 

where en+l denotes an n + 1 dimensional vector with a 1 at position n + 1 and 
zero elsewhere. In the algorithm of Section 3 we do not form the matrices A, O 
and P ,  neither the vector b. These quantities are introduced here to facilitate 
notation in the analysis. 

Now, consider the dual problem to [LINFCP]: 

max b T ( v -  u) - ~(vTv +uTu)  

[PD] s.t. AT(v -- u) = 0 
eT(u + V) = 1 

U~u ~_O. 

As a consequence of strict concavity the above problem has a unique optimal 
solution and it can be shown that  any minimizer (xt, Yt) of F is related to the 
unique optimal solution (ut, vt) by the identities: 

1 
(ut)i = - max{0, rli(Xt, Yt) } 

t 

1 
(vt )i = - -  min{0, r2i(xt, Yt) } 

t 

for i = 1 , . . . ,  m.  This implies the following result. 

LEMMA 2.1. 01(xt,Yt) and 02(xt,Yt) are constant for (xt,Yt) E Mr. Fur- 
thermore aTxt -- Yt -- bi is constant for 01~ = 1 and aTxt + Yt -- bi is constant 
for 02~ = 1 Vi = 1 , . . . , m .  

Following the lemma, the notation 01 (Mr), 02 (Mr) is used instead of 01 (xt, Yt), 
02(xt,yt) for (xt,Yt) E Mr. The function F ( x , y , t )  is convex, and hence 
the solution set Mt is convex. Now, let Jo = {i101~ = 0 A 02, = 0} and 
T)o = {z = (x,y) E R'~+llaTx -- y <_ bi A aTx + y > bi A i E Je}. The following 
characterization of Mt can be obtained from the previous development. 

COROLLARY 2.2. Let zt E Mt and O1 = Ol(Mt) ,02 = 02(Mt) .  Then, 

i t  -- (zt +No) n/)o.  

Obviously, Mt is a singleton if Af0 consists of the null vector. 

2.2 Behavior of the minimizers as a function of t .  

The purpose of this section is to show how the solution set Mt of F(x,  y, t) 
approximates the solution set X of [LINFLP] as t tends to zero. We begin with 
a basic lemma. For convenience of notation let Q = OA = O [A A ee]. Clearly, 
p = QTQ. 
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LEMMA 2.3. Let zt E Mt and 81 = O l ( M t ) , 0 2  ---- 0 2 ( M r ) .  Then, the foUowing 
system is consistent: 

(2.2) Pdz = e n + l .  

The proof can be obtained by setting the gradient of F at zt equal to zero 
and reducing (2.2) into the normal equations corresponding to an overdetermined 
system. 

Let dz be a solution to (2.2). It is straightforward to verify that  zt + tdz is 
the least squares solution to the overdetermined system of linear equations 

(2.3) Qhz = b. 

To see this, it suffices to insert Pdz = e ,+ l  in ten+l + Pzt  = QT~ to get 
tPdz + Pzt  = QTy. This implies that  QTQ(zt + tdz) = QTy. 

LEMMA 2.4. Let zt E Mt and 01 -- 01(Mt),82 = 02(Mr). If  the overdeter- 
mined system (2.3) is consistent then 

(2.4) ~Ox(Axt - y t e  - b) = -Ox ( Adx - dye) 

(2.5) 102(Axt  + yte - b) = -O2(Adx + dye) 

for any solution d~ =(dx, dy) to (2.e). 
PROOF. We know that  zt + tdz is the least squares solution to the overdeter- 

mined system of linear equations Qhz = b. If this system is consistent, zt + tdz 
solves Qhz = b. Therefore, we get 

02A 02e yt + tduJ b " 

O1 0 ] 
Premultiplying both sides by 0 02 

k = 1, 2, we get 

and using the fact that  02 = Ok, 

02 A 02e Yt + tdu J 02b " 

[] 

Next, let dz solve (2.2) and assume that 01 (xt + edx, yt + edu) = 01 and 
02(xt+edx,yt+edu) = 02, i.e., zt+edz = (xt+edx,yt+edu) E Co for some e > 0. 
The linear nature of the problem implies that  zt + 6dz = (xt + 6dx, Yt + 6du) E Co 
for 0 < 5 < e. Therefore, using the necessary condition for a minimizer of F we 
get 

- ten+l + ATOb = Pzt  ~ tPdz + Pzt  = . 4 T O b  

=V P(6d~ + zt) = - ( t  - (~)en+i + -z~TOD. 
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COROLLARY 2.7. 
81 = e l ( M ~ ) ,  82 = 

(2.7) 
(2.8) 

where d~ = dr 

Hence, zt + 6dz = (xt + 6dx,yt + 6d u) is a minimizer of F ( x , y , t  - 5). Using 
Corollary 2.2, we have the following result. 

LEMMA 2.5. Let zt E Mt and 01 = 01(Mr),02 = 02(Mr). Let dz solve (2.2). 
I f  Ol(xt + edx,yt + ed u) = 01 and 02(xt + edx,yt + edr) = 02 for e > 0 then 
Ol(xt + 6dz,yt + ~d u) = 01 and 02(xt + 6dx,yt + 6d r) = 02 and 

Mr-6 = (zt + 6dz + Ale) f3 De, 

f o r O < 5 < e .  

Although t is a continuous parameter, there is only a finite number of binary 
vectors 01 and 02. Furthermore, the previous lemma ensures that whenever 
there exists tt ,  t2 where 0t (xtl, Ytl ) = 01 (xt2, Yt2) and 02 (xtl, Yn) = 02 (xt2, Yt:) 
we have 01(xt,Yt) = Ol(Xt,,Ytl) and 02(xt,yt) = Ou(xtl,ytl) for all t e [tl,t2]. 
As a consequence, 81(Mr) and 02(Mr) are piecewise constant functions of t. 
Hence, as t tends to 0, 81 and 82 should remain constant in a neighborhood of 
0. That is, there exists a positive value of t, say to, such that 81 and 82 remain 
constant for 0 < t _< to. Therefore we have the following result. 

THEOREM 2.6. There exists to > 0 such that 81(Mr) and 82(Mr) are con- 
stants for 0 < t < to. Furthermore, i] 81(zt +6dz) = 81(Mr) and 82(zt +6dz) = 
82(Mr) then 

Mt-~ = (zt + ~d~ + Afo) n l)o, 

for 0 < 5 < t < to, where dz solves (2.2). 

Now, for zt �9 Mt and 81 = ~1(Mt),82 = O2(Mt), let us define 

1 
(2.6) u t =  01rl(x t ,Yt) ,  and v t = - ~ O 2 r 2 ( x t , Y t ) .  

Recalling the necessary optimality conditions for a minimizer, we have t -  
eTOlr l (x t ,  Yt) + eTO2r2(xt,Yt) = 0, which implies that eT(ut + vt) = 1, and 
ATOlr l (x t ,Y t )  + AWO2r2(xt,Yt) = 0 implies that AT(vt - ut) = O. Further- 
more, (ut,vt) has all components nonnegative. Therefore, (ut,vt) is feasible 
for [LINFLD]. Now, we give the following important corollary to the previous 
theorem. 

Let 0 < t < to where to is given in Theorem 2.6 and let 
82(Mt). Then 

Olr1(   +td ,y  +td ) = 0, 
+td ,y  +td ) = 0, 

is any solution to (2.2). Furthermore, 

(2.9) 1Ol r l (x t ,y t )  = -O l (Adx  - d r e  ), 

1 
(2.10) 702r2(xt ,y t )  = -O2(Adx +dre/, 

i.e, 0 1 r l ( x t , y t ) / t  and 02r2(x t , y t ) / t  are constants. 
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PROOF. Let zt-~ E Mt-~ for 0 < 5 < t. By Theorem 2.6, there exists d~ that 
solves (2.2) such that z t -~  = zt + 5dz. Hence, there exists d* that  solves (2.2) 
such that zt + 5d* E M~_~ for all 0 < 5 < t. Now, it is well-known (see e.g., [8]) 
that 

lira l r T ( x t , Y t ) O l r l ( x t , Y t )  + ~ r T ( x t , Y t ) O 2 r 2 ( x t , Y t )  = O. 
t--+o 

Therefore, we get 

O l r l ( x t + t d * , y t + t d y )  ---- O, 

02r2(x t  + td*x,yt + tdu) = O. 

Any solution dz of (2.2) can be expressed as dz = dz + r/z where r/z = [~:] E 

Af(P). However, we have 

P~?~ = O ~ Q~?z = O ~ 0 2 A  02e  ~y 

Inserting this in the above two equations, we get equalities (2.7) and (2.8). 
Equalities (2.9) and (2.10) follow from Lemma 2.4 since (2.7) and (2.8) imply 
that (2.3) is consistent. [] 

The corollary indicates that  the residuals corresponding to the violated in- 
equalities approach their optimal values in a well-conditioned manner as t de- 
creases to zero. As we shall see in Section 3, the behaviour of violated residuals is 
the driving force of the penalty continuation method. Now, we are in a position 
to give a new characterization of t h e / ~  solutions. 

THEOREM 2.8. Let 0 < t ~ to, where to is as given in Theorem 2.6 and let 
81 = 81(Mr), 82 = 82(Mr). Let zt E Mt  and dz solve (2.2).Then 

where 

and 

X - Mo, 

Mo = (zt + tdz + Ale) N De, 

1 1 
u* = ~ 0 1 r l ( x t , y t )  ; v* ---- - - -~02r2(xt ,Yt)  

solve [LINFLD]. 

PROOF. Let z0 E M0. Then there exists a solution ~ to (2.2) such that 
zo = z t + t ~ .  By Corollary 2.7, we have Olr l ( xo ,Yo)  = 0 and 02r2(xo,Yo)  = O. 
Now, using the fact that  (u*,v*) is dual feasible (i.e., eT(u  * + v*) = 1 and 
AT(v  * -- u*) ---- 0) we get: 

Y0 = Y0 + 0x0 
= yToeT(u* + v*) + x T A T ( v  * -- U*) 

= ( - - x T A  T + eTy  T + bT)u * + (XTo A T  + eTy  T -- bT)v * + bT(v * -- u*) 

1 T = - 7rl  (Xo, yo)Olr l  (xt ,  Yt) - ~r T (Xo, yo)O2r2 (xt ,  Yt) + bT(v * -- u*) 

= bT(v * -- u*). 
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This shows that  Zo and (u*, v*) are optimal in their respective problems. Since 
this holds for any Zo E Mo, Mo C_ X.  

If Mo is a singleton, then the proof is complete. Assume otherwise and let 
z = (x,y) E X.  By feasibility, we have A x - y e  < b and A x §  > b. Fur- 
thermore, (x,y) is complementary to (u*,v*) which implies that 01 r1 (x ,y )=  0 
and O2r2(x, y) = 0. This further implies 

Ole O2e ] [bb]" 
Now, using the above and the necessary condition (2.1) for a minimizer of F (zt 
minimizes F(x,  y, t) ) we have 

P(z  - zt) 

I = ten+l - 01e O2e + Ole O2e = ten+l 

Thus (z - z t) / t  is a solution to (2.2). We have shown that z E zt + tdz + Afo. 
Now observing that  z E Do by virtue of feasibility the proof is completed. 

Clearly, X is a singleton if Ale consists of the null vector. 

2.3 Extended binary vectors. 

In this section, we give some further results that are useful in the design of the 
algorithm and its finite convergence analysis. We define the following "extended 
binary vector", 

1 i f a T x - - y > b i  { 1 i f a T x + y < b i  
~1, (x, y) = 0 otherwise and ~2, (x, y) = 0 otherwise. 

We also define the "active set" of indices 

A(x, y) = {i1 1, (x, y) = 1} u {i1 2, (x, y) = 1}. 

Extended binary vectors differ from the binary vectors used thus far only for 
those points that belong to B. However, this difference leads to an enlargement 
of the set of violated inequalities, and brings the matrix P closer to having full 
rank. This enlargement is instrumental in the finiteness proof of the modified 
Newton used to solve the penalty subproblems. This is discussed in Section 3.1. 

Now, we analyze the behaviour of the set of extended binary vectors associated 
with the set of minimizers of F(x,  y, t) in the range (0, to] where to is as defined 
in Theorem 2.6. This is important in establishing the finite termination property 
of the penalty algorithm defined in Section 3. 

Denote by S(Mt) the set of all distinct extended binary pairs of vectors cor- 
responding to the elements of Mr. In other words, for any (xt,yt) E Mr, 
(~1 (xt, Yt), ~2(xt, Yt)) e S(Mt) .  We have the following result which is a conse- 
quence of linearity. 
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LEMMA 2.9. I f  S (Mt l )  = S(Mt2) where 0 < t2 < tl then S(Mt , )  = S(Mt2) = 
S(Mt)  for t2 < t < tx. 

Now, as 01(Mr) and 02(Mr) remain constant in (0,to], and the number of 
extended binary vectors is finite, the previous lemma ensures that  S(Mt)  can- 
not keep changing infinitely as t approaches 0. Hence, we have the following 
theorem. 

THEOREM 2.10. There exists ~ such that S(Mt)  is constant for t E (O,t-) 
where 0 < t < to. 

For t E (0,t-) let (xt,Yt) E Mt with 01 = ~l(Zt,Yt) and 02 = ~2(:gt,Yt) �9 
Consider the system: 
(2.11) Pdz = en+l 

where 
[ AT~}IA + AT~}2A -AT~}ae + AT~}2e ] 

P = _eT~}IA + eT~}2A eTOle + eTO2e �9 

This is a consistent system of linear equations as shown in Lemma 2.3. By Theo- 
rem 2.10 there exists (xt ,Yt)  E Mt  such that ~I(Xt,Yt)  = ~1 and ~2(Xt,Yt) ---- ~2 
for all t E (0,t-). This implies that there exists dz that solves (2.11) such that 
zt+hdz E Mr-6 for all 5 E [0,t). Now, as t approaches 0, it is well-known (e.g., 
[8]) that both Olr l (xt ,  Yt) and O2r2(xt, Yt) tend to zero. Therefore, we have 

O l r l  (Xt "1- tdx, Yt + tdu) = O, 

02r2(x t  + tdx,yt  + td~) = O. 

By continuity of rl and r2, we have that rli(Xt + tdx,yt  + tdy) < 0 for all 
indices i such that /~1i = 0 and r2i(xt + tdx,yt  + td~) > 0 for all indices i 
such that 02i = 0. This implies that (xt + tdx,yt  + tdv) is a feasible point 
for [LINFLP]. Let u* = l O l r l ( x t , y t )  and v* = -~Ozr2(x t , y t ) .  Since (u*,v*) 
is a feasible solution of [LINFLD] and (xt + tdx,yt  + tdu) is complementary 
to (u*,v*) and is feasible in [LINFLP], it follows that (xt + tdx,yt  + td~) and 
(u*, v*) solve [LINFLP] and [LINFLD], respectively. Clearly, if the solution to 
(2.11) is unique, d~ = (d~,d;) say, then (xt + td*x,yt + td;) solves [LINFLP]. 
Since dz can be replaced by dz + 7lz = (d, + ox,d~ + rl~,) where r/z E A/'(P), it 
follows that 

O l r l ( x t  -t- tdx,yt  + td~) = O, 

~}2r2(xt + tdx,yt  + td~) = 0 

for any solution dz of (2.11). Thus we have the following theorem. 

THEOREM 2.11. Let t E (O,t-) and (xt,Yt) E Mt with /~1 = ~l(Mt) and 
~2 = 02(Mr). Also, let u* 1 - V* = ~Olr l (X t ,Y t )  and = - 1 0 2 r 2 ( x t , Y t ) .  Then, 

(2.12) Olr l (xt  + tdx,yt  + td~) = O, 

(2.13) ~)2rz(xt + td~,yt + td~) : 0 

for any solution dz = (dx,d~,) to (2.2). Furthermore, if dz is unique or rl(xt  + 
tdx,yt + tdy) < 0 and r2(xt + tdx,yt  + tdu) >_ 0 then (xt + tdx,yt  + td~) solves 
[LINFLP]. 
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3 The penalty algorithm. 

Based on the analysis given in the previous sections, a penalty algorithm for ~or 
problems is designed. The algorithmic ideas are mainly motivated by the results 
of Theorem 2.11 and Lemma 2.5. For t sufficiently small (t E (0 , t ) ) ,  the point 
zt + tdz and the dual pair (u*,v*) as defined in Theorem 2.11 form a partially 
complementary and partially feasible pair regardless of the choice of dz (i.e., 
they satisfy (2.12)-(2.13)). Therefore, if zt + tdz is feasible, (zt + tdz, (u*, v*) ) 
is a primal-dual optimal pair. If the partial complementarity and feasibility 
conditions as stated in Theorem 2.11 hold but zt + tdz is not feasible, we move 
to the smallest positive breakpoint along dz. If these conditions do not hold, 
this is an indication that  we are far from the solution. In this case, inspired by 
Lemma 2.5 one can find the largest 5 for which O1 ( Xt 4-r , Yt + 5d~ ) = 01 (x t, Yt ) 
and 02 ( xt + Jdx , Yt 4- (id~ ) = 02 ( xt , Yt ) . This property provides a sound criterion 
to reduce t. More precisely, we propose the following algorithm. 

Choose t and compute a minimizer zt of F 
whi le  not STOP 

reduce t 
compute a minimizer zt of F 

e n d  while.  

Here, STOP is a function that  returns TRUE if conditions (2.12)-(2.13) hold 
and primal feasibility is achieved (dual feasibility is always maintained at a 
minimizer of zt of F) .  To complete the description we need an algorithm to 
compute a minimizer of F ,  and a procedure to reduce t. 

3.1 Computing a minimizer of F .  

The algorithm for computing a minimizer zt of F is adapted from robust linear 
regression using Huber functions [10]. It is a standard Newton iteration with 
a simple line search to solve the nonlinear system of equations F~(x, y, t) = 0 
and F~(x , y , t )  -- O. The idea is to inspect the regions of R n+l to locate the 
region where the local quadratic Qo contains its own minimizer. At a given 
iterate, the Newton step is computed using the quadratic expansion of F .  If 
a unit step in this direction yields a point in the same region, then the global 
minimizer has been found. That is to say that the quadratic representation of F 
which contains the global minimizer has been found. Otherwise, the algorithm 
proceeds with a line search. 

A search direction hz is computed by minimizing the quadratic Q~ where 
-- 0(x, y) and z = (x, y) is the current iterate. This yields the linear system 

(3.1) Phz  : - - ten+l  -- P z  4- ATO~). 

Denote the right-hand side vector in equation (3.1) by g, so that  we have Phz  = 
g. If t5 has full rank then hz is the unique solution to (3.1). Otherwise, if the 
system (3.1) is consistent, a minimum norm solution is computed and used as a 
search direction. If the system is inconsistent, the projection of g onto Af(P) 
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is computed to serve as a descent direction. These choices are motivated and 
justified in [10]. After a finite number of iterations (this can be shown using the 
analysis in [10]) we have z + hz E C 0. Therefore, z + hz is a minimizer of F .  
The modified Newton algorithm is summarized below. 

r e p e a t  
01 = 01(x,y); ~ = 02(x,y) 
if (3.1) is consistent then 

find hz from (3.1) 
i f z + h z  EC~ then 

z + - - z + h z  
stop = true 

else 
z 4-- z + ah~ (line search) 

endif 
else 

compute hz -- null space projection of g 
z +-- z + ahz (line search) 

endif 
un t i l  stop. 

3.2 Reducing t. 

Let zt be a minimizer of F ( x , y , t )  for some t > 0 and let t~l = ~l(Xt,Yt) and 
~2 ~- ~2(x t ,Y t ) .  Fhrthermore, let dz be a solution to (2.11). Two cases arise: 

Case  1 In this case, 

and 

~)lrl(xt q- tdx, Yt + tdu) = O, 

~)2r2(xt d-tdx,yt + tdy) = 0 

but (xt + td~,yt + tdu) is infeasible in [LINFLP], i.e., there exists j such 
that  either rl~(Xt d- tdx,Yt + tdu) > 0 o r  r2j(xt d- tdx,yt -4- tdu) < O. 
Let r --- {ak , k  = 1 , 2 , . . . , m l }  and ~b2 - {/~a,k = 1 , 2 , . . . , m u }  be the 
sets of positive kink points where the components of rl (xt + td~, Yt + tdv) 
and r2(xt + tdx,yt + tdv) change sign, respectively. We choose a* = 
rain(mink ak, mink/~k), and tnext ---- (1 - a*) t .  We let 

xt~ . ,  =- xt + a*tdx; Yt~e~t -- Yt + a*tdy. 

Then, (xt . . . . .  Yt~.t)  is used as the starting point of the modified Newton 
algorithm with the reduced value of t. 

Case 2 

and/or  

~ ) l r l ( X t  + $dx,yt + tdy) ~ 0, 

~)2r2(xt + tdx,yt + tdy) ~ O. 
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In this case we reduce t as follows. Let A((1 - e)t) denote the number 
of changes from A(zt)  to A(zt  + etdz). Then, bisection is used to find 
such that  A((1 - ~)t) ~ �89 Then, 

tnext  = (1 -- ~)t, Zt~,| =- zt + ~tdz. 

As in Case 1, (xtn,,, ,  yt . . . .  ) is used as the starting point of the modified Newton 
algorithm with the reduced value tnext of t. 

4 F in i te  conver ge nc e .  

In this section, the algorithm is shown to converge finitely. In the analysis 
an iteration of the algorithm means either a modified Newton iteration or an 
execution of the t-reduction procedure. 

Now, let (x,y) E Mt and u = 101r l (x , y )  and v = - 1 0 2 r 2 ( x , y ) .  From 
Theorem 2.11, conditions (2.12)-(2.13) hold at (x + tdx, y + tdu) where (d~, dy) 
is any solution to (2.11). Following the reduction procedure, either A(x  + tdx) - 
(y+tdu)e < b and A (x+ td~ )+(y+tdu )e  _> b and thus z + = z+td~ is a solution 
to [LINFLP] and the algorithm stops, or A(z)  C A(z+) .  The latter condition 
follows directly from the choice of a* in Case 1 of the reduction procedure. 
In addition to this, it guarantees that  z + a*tdz E C~. Therefore, using the 
definition of the gradient and the way d~ is calculated, we have z + a*tdz E 
M(1-~.)t �9 Therefore, we have proved the following lemma. 

LEMMA 4.1. Assume t E (O,t-). Let z = (x,y)  E Mt with 01 = ~l(x,y)  
and/~2 = 02(x,y).  Let dz solve (2.2), and z + = (x+,y +) be generated by one 
iteration of the algorithm. Then either 

and the algorithm stops, or 

z+ = z + td~ E X 

z + -- z + ~*tdz E Mr+, 

t + = (1 - a*)t 

where a* is as defined in Case I of the reduction procedure, and A(z  +) is an 
extension of A ( z ) .  

Let z E Mt for some t > 0. Unless the stopping criteria are met and the 
algorithm stops with a primal-dual optimal pair, t is reduced by at least a 
factor of n where ~ E (0, 1) as discussed in the reduction procedure. Since the 
modified Newton iteration is a finite process, t will reach the range (0, t-) where 

is as defined in Theorem 2.10 in a finite number of iterations. Now assume 
t E (0, t-). From Lemma 4.1 either the algorithm terminates or the active set 
.,4 is expanded. Repeating this argument, in a finite number of iterations the 
matrix /5 will finally have rank n + 1 since A has rank n. When 15 has full 
rank the solution dz to the system (2.2) is unique, and z + = z + tdz solves 
[LINFLP] by Theorem 2.11. Therefore we have proved the following theorem. 

THEOREM 4.2. The algorithm terminates in a finite number of iterations with 
a primal-dual optimal pair. 
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5 Implementation and testing. 

In this section, we provide implementation details and numerical experience 
with the algorithm of Section 3. The first aim is to test the viability of the 
approach, the behaviour of the algorithm and the numerical accuracy of the 
method. Second, we wish to test the potential of the algorithm as a competitor 
to the well-known algorithms for the s problem. This involves comparisons 
with the Barrodale-Phillips implementation of the simplex algorithm [2], and the 
interior point algorithm of Zhang [19]. The Barrodaie-Phillips implementation 
of the simplex method is accepted to be one of the best codes available for the 
linear goo problem according to Bartels, Conn and Li [4]. 

5.1 Implementation.  

We refer to the penalty continuation code as LiNFSOL 1. The implementation 
was done in Fortran 77 on a SUN SPARC 4 workstation. The major work in the 
Newton algorithm is dominated by the requirement to solve the least squares 
systems of the form . ~T~) .~  X ---- g, more precisely the system (3.1). To check 
optimality and reduce t, system (2.11) is solved. Both linear systems have 
dimensions (n + 1) x (n + 1). The AAFAC package based on the work of Nielsen 
[15] is used to solve these linear systems. In AAFAC the solution is obtained via 
an L D L  T factorization of the matrix Pk = -4TOA. Let us recall that (~ii = 1 
for the columns of A corresponding to indices in the active set ,4. Based on 
this observation, D and L are computed directly from the active columns of 
.4, i.e., without squaring the condition number as would be the case if P~ was 
first computed. The efficiency of the penalty algorithm hinges on the following 
observation. Normally, only a few entries of the diagonal matrix (~ change 
between two consecutive iterations of the modified Newton method. Therefore, 
the factorization of Pk can be obtained by relatively few up- and down-dates 
of the factorization of Pk-1 .  Occasionally, a refactorization is performed. This 
consists in the successive updating L D L  T +- L D L T §  T for all j in the active 
set (starting with L -- I, D -- 0). It is considered only when some columns of 
,4 leave the active set, i.e., when downdating is involved. If many columns are 
involved in the change from Pk-1 to Pk it may be cheaper to refactorize Pk. 
Otherwise, a refactorization is used when a downdating results in a rank decrease 
and there is an indication that rounding errors have marked influence. 

When the system (2.11) is solved after the modified Newton algorithm, the 
L D L  T factors axe available from the previous Newton step. The details of these 
numerical linear algebraic tasks can be found in [15]. 

For efficiency in work and storage, we keep only one copy of A and b. For the 
computation of residuals rl and r2, the matrix-vector product A x  is formed 
only once and used for both vectors. A similar practice is adopted for the update 
(or, downdate) of the factorization. 

The stopping criteria are based on checking conditions (2.12)-(2.13) and satis- 
fying primal feasibility. The feasibility tolerance used is computed as m llbll~eM , 

1LINI=SOL is avai lable  for d i s t r ibu t ion  as a s t a n d a r d  For t ran  77 subrout ine .  It can be 
obta ined from the au thors  on request .  
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where e M denotes the computer's unit roundoff. 
As regards competing algorithms, we have used the original implementation 

of the Barrodale-Phillips algorithm available in the NAG Subroutine Library 
[14]. Since Fortran implementations of the interior point algorithms for the 
~oo problem were not available, we have also developed an efficient Fortran 77 
implementation of the predictor-corrector primal-dual algorithm of Zhang based 
on reference [19] and his Matlab code. We have made extensive use of BLAS 
routines [7]. In [19] Zhang uses x ~ = 0 as the starting point for his algorithm. 
We have adopted the starting point x ~ = ( A T A ) - I A T b  as this leads to a twofold 
improvement in the number of iterations of the interior point method in some 
cases. 

Unless othewise stated, all runs were performed on a SUN SPARC IO00E 
workstation. 

5.2 Test problems. 

Two kinds of test problems are used. The first type is randomly generated 
problems obtained from a problem generator. For this purpose, an ~ problem 
generator is designed, which provides problems with a previously known solu- 
tion. The idea is based on linear programming theory. For given dimensions m 
and n,  appropriate vectors A, x,  y, u, v and b axe suitably chosen to satisfy 
the Karush-Kuhn-Tucker optimality conditions for the goo problem. The entries 
of the matrix A, the vector x and the scalar y axe chosen from a uniform distri- 
bution. The entries of u and v, however, are chosen to satisfy dual feasibility, 
and b is selected so that  complementary slackness holds. The generator can pro- 
vide nondegenerate, primal degenerate and dual degenerate problems. Problems 
with exactly n + 1 residuals where the maximum is acheived are nondegenerate. 
Primal degeneracy is forced through the choice of an additional number of pdeg 
equations to be satisfied as equality at the optimal solution so that at optimality 
there are n + 1 + pdeg equations among the 2rn that  are binding. Dual degen- 
eracy, however, is achieved when ddeg additional dual variables are chosen to 
be zero so that  in total there are n + 1 - ddeg nonzero optimal dual multipliers. 

The second type of test problems is function approximation problems in the 
~ norm. The problem is to estimate a certain function f ( x )  by a polynomial of 
degree n -  1 on a set of m evenly spaced points over an interval [~1, ~2] of length 
~. The estimation is done through the determination of the coefficients of the 
polynomial. Explicitly, we consider the problem of computing the n unknowns 
X l , . . . ,  xn in the system 

O, , ~2 --  ~1" 
~2 f(#) = xJ~3-1" # = T ' " "  

j = l  

Obviously, bi = f ( i ~ / m ) ,  for i = 1 , . . .  ,m  and aij = ( i~ /m)  j -1  for i = 1 , . . .  ,m, 
and j = 1 , . . . ,  n.  These problems tend to be increasingly ill-conditioned as m 
and n are increased. 
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5.3 Initialization strategies. 

An i m p o r t a n t  de t e rminan t  of pe r fo rmance  of the  pe na l t y  a lgo r i thm is the  ini- 
t ia l iza t ion s t ra tegy.  This  consists  in the  choice of su i tab le  ini t ia l  values x ~ , yO 
and t o of x ,  y and  t .  Af ter  cons iderable  p re l imina ry  e xpe r ime n t a t i on  wi th  sev- 

45 .I 
40 o a~ete~1 + +~ 

x ~'mgy 3 �9 

20 ~+~+ o~ 

15 + .  o 

~0 ~ ~176 

j oo 

00 200 300 400 500 6G0 700 800 

Figure 5.1: Performance of initialization strategies for random nondegenerate problems 
( ~ / .  = 4).  

eral a l te rna t ives ,  we have set as ide the  following s t ra teg ies  as the  mos t  p romis ing  
candidates :  
STRATEGY 1 

X o = 2 ( A T A ) - I A T b ,  yO = M I N R E S ( m / 2 , A x  o _ b), t o = 0.01 • n • yO 

STRATEGY 2 

x o = ( A T A ) - I A T b ,  yO = M I N R E S ( m / 2 ,  A x  o _ b), t o = 0.1 • n • yO 

STRATEGY 3 

x o = ( A T A ) - I A T b ,  yO = M I N R E S ( m / 2 ,  A x  o _ b), t o = 0.01 • n • yO 

STRATEGY 4 

x o = ( A T A ) - I A T b ,  yO = M I N R E S ( m / 4 ,  A x  o _ b), t o = 0.1 • n • yO 

STRATEGY 5 

x o = 2 ( A T A ) - I A T b ,  yO = M I N R E S ( m / 2 ,  A x  ~ - b), t o = 0.1 x n x yO 

where M I N R E S ( k ,  r) re tu rns  the  k t h  smal les t  en t ry  of  r in abso lu te  value. In  
F igure  5.1, we i l lus t ra te  the  pe r fo rmance  of [INFS01_ under  these  five compet ing  
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initialization strategies using randomly generated nondegenerate test problems 
with the ratio m / n  = 4. The CPU time is given in seconds. 

We observe that all five strategies perform similarly with a slight dominance 
of Strategy 1. As this test gave similar results for primal and dual degenerate 
problems we adopted Strategy 1 as our default initialization strategy for the 
randomly generated problems. 

On the other hand, the performance of the above initialization strategies on 
the function approximation problems were somewhat inferior compared to the 
case of randomly generated problems. This is essentially due to the following 
observation. Although the optimal solution in these problems is nondegenerate 
the largest nonzero residuals at the solution can be as small as 10 -s . We refer 
to this property as near degeneracy. The performance of/INFSO/ is affected 
negatively by this property as supported by the following theorem. 

THEOREM 5.1. Let (x*,y*) be an optimal point for [LINFLP]. Let 

~ , ~ 1 ifaVix * - y * = b i  
01~(x ,y*) = ~ 0 otherwise, 

and 

Define 

P =  

[dx] Let dz = du 

, ~ 1 i faTx * + y * = b i  
2,(x ,y*) = ( 0 otherwise. 

[ A T r i A  T ATO2A 
--eTO1A + eT~)2A 

--AT(~le + AT~)2e ] 
eT(~le + eTO2e  J " 

be any solution to Pd = en+l and assume that 

(5.1) 01(-Adx  +due) < 0, and 02(Ad~ +dye) > O. 

Then, for 0 < t < to < 5, 0i(Mt) ---- ~1 and 02(Mr) = ~2 where 5 = min{51,52} 
with 51 : maxr,(x . ,y . )< 0 r l (X*,  y*) and 52 = minr~(x.,u*)>0 r2(x*, y*) . 

The proof of this theorem can be obtained, mutatis mutandis, from the proof 
of Theorem 7 in [12]. A close inspection of conditions (5.1) reveals that they 
are equivalent to a nondegeneracy assumption which is satisfied by the function 
approximation problems. The theorem shows that one should expect to decrease 
the parameter t to the level of the smallest optimal nonzero residual value be- 
fore termination occurs. This implies that LINFSOL has to reduce t several 
times, resulting in a large number of iterations. This also makes the design of 
an effective starting strategy difficult for this class of problems. Bartels, Corm 
and Li [4] showed that the function approximation problems in the / ~  norm 
are characterized by a sign alternating property which states that at an optimal 
solution there are n + 1 equations whose residuals Ibi - aTxl correspond to the 
maximum residual t l A x -  b Iloo with error terms (hi -aTx )  alternating in sign as 
the counter moves from 1 to n + 1. They propose an alternative starting point 
for their primal nondifferentiable penalty code based on Chebychev theory. In an 
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Figure 5.2: Performance of initialization strategies for function approximation problems 
(problem number m = 50, 100, 200; n = 2, 3, 4, 5, 6, 7). 

effort to improve the performance of LINFSOL on these problems we have exper- 
imented with several strategies based on the Bartels-Conn-Li recommendations. 
We have finally settled for the following strategy. Let zi = ~1 + n (~ - 1) for 
i = 1 , . . . , n  + 1. Consider the (n + 1) • (n + 1) linear system of equations 

n 

f(zi) --  ~__4"TjZ~ - 1  : ( -1 ) i0 ,  i : 1 , . . .  ,n  + 1, 
j = l  

in the n + 1 unknowns 71,. .- ,7,~ and r We solve this system and use the 
solution as the initial point for LINFSOL. We choose t o = 10 -n+ l  following 
Theorem 5.1. This point results in a significant improvement in some problems. 
This is illustrated in Figure 5.2 where we compare the Bartels-Conn-Li strategy 
(BCL) with Strategy 1 described above using the exponential function over the 
interval [0, 1] (i.e., ~1 = 0 and ~2 = 1). We have used 18 problems where m 
assumes the values 50, 100 and 200, and n assumes the values 2 ,3 ,4 ,5 ,6 ,7  
for each value of m in this order. This test was done on a SUN SPARC 4 
Workstation. 

5.4 Performance and comparison with the competing methods. 

In this section we report the results of our comparisons with the Barrodale- 
Phillips code and the interior point algorithm of Zhang. We refer to the Barrodale- 
Phillips code as BP and to the predictor-corrector interior point code as POP.  
To present our results we use eight plots where we report the average run time 
and iteration results for ten problem instances for given m and n.  Our purpose 
is to display continuous behaviour as the problem size is increased. For the non- 
degenerate problems the first two plot reports run t ime and iteration results for 
problems where the ratio m/n is kept constant at two and m varies from 60 to 
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800 in steps of 20. To illustrate behaviour at a higher m/n ratio the next two 
plots report results where the ratio m/n is kept constant at four and m varies 
from 120 to 800 in steps of 20. For the primal and dual degenerate problems we 
give four plots (run time and iteration results) where we keep the ratio m/n = 2 
and vary m from 60 to 800 in steps of 20. In the charts where iteration numbers 
are graphed BP iterations have been divided by 10 to make the plots easier to 
read. Furthermore, we also report the number of refactorizations in LINFSOL, 
in connection with the computations of factors L and D. All run time results 
are in CPU seconds exclusive of input and output. All three codes report results 
accurate to machine precision. We remark that LINFSOL may decrease the value 
of the parameter t to 10 -4 for some of the random problems. 
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Figure 5.3: Run time comparison for nondegenerate problems (m/n = 2). 

We begin with the randomly generated nondegenerate problems with the ratio 
m/n = 2 in Figures 5.3 and 5.4. Here we observe that in general LINFSOL is 
increasingly faster than BP by a factor of three. It is also faster than PCIP by 
approximately a factor of two and a half. The number of iterations of LINFSOL 
grows very slowly while that of PCIP remains almost constant around 10. We 
observe a steady growth in the number of iterations of BP. LINFSOL performs 
between three and fourteen t-reductions on these problems in average. The 
average number of refactorizations remains around three. 

In Figures 5.5 and 5.6 we present the same information for nondegenerate 
problems with the ratio m/n = 4. 

We observe that LINFSOL outperforms both BP and PCIP by a factor of three 
and two and a half, respectively, as the problem size is increased. The number of 
t-reductions vary between five and sixteen. The average number of refactoriza- 
tions in LINFSOL is between three and four. PCIP uses between nine and eleven 
iterations on these problems. 

In Figures 5.7, 5.8, 5.9 and 5.10 we report results on primal and dual degen- 
erate problems, respectively. Here, the ratio m/n is kept constant at two. The 
degree of primal degeneracy is pdeg = L-~-~] while we use ddeg = for dual 
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Figure 5.4: Iteration comparison for nondegenerate problems ( m / n  = 2). 
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Figure 5.5: Run time comparison for nondegenerate problems ( m / n  = 4). 

degenerate problems. 
We notice that LINFSOL performs better on primal degenerate problems com- 

pared to dual degenerate problems. This may be due to the fact that dual de- 
generate problems have non-unique primal optimal solutions. In our experience 
we have found this factor to weaken the performance of the penalty algorithm. 
It is worth mentioning here that the performance of BP is also adversely affected 
by dual degeneracy. For both classes we observe that LINFSOL becomes increas- 
ingly faster than BP. More precisely, for primal degenerate problems EINFSOL 
sustains a speed-up of three and a half over BP while it reaches a speed-up of 
three in the dual degenerate case. For primal degenerate problems LINFSO[ is 
twice as fast as PCIP. On dual degenerate problems, PCIP appears to do better 
than IINFSOL reaching a speed-up factor of one and a half. This is reflected in 
the number of iterations of PCIP, which rarely exceeds six for dual degenerate 
problems while it is around eleven in average for primal degenerate test cases. 
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Figure 5.6: Iteration comparison for nondegenerate problems (m/n = 4).  
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Figure 5.7: Run time comparison for primal degenerate problems ( m / n  = 2).  

The number of t-reductions of LINFSOL for the dual degenerate case varies be- 
tween 1 and 28 while it is between two and eight for the primal degenerate case. 
The number of refactorizations is between four and nine for the dual degenerate 
case whereas it remains constant around two for the primal degenerate case. 

We can infer the following conclusions from the above results. 

�9 The penalty method appears to do best on nondegenerate and primal de- 
generate problems. 

�9 The penalty method is expected to perform better after a certain threshold 
problem size is reached. 

�9 In all cases, we have observed that the number of refactorizations of the 
penalty method remains almost constant as the problems become larger. 

* The iteration charts reveal that the simplex method has a steady growth 
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Figure 5.8: Iteration comparison for primal degenerate problems (m/n  = 2). 
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Figure 5.9: Run time comparison for dual degenerate problems ( m / n  = 2). 

in the number of iterations. The interior point method uses an almost 
constant number of iterations for a given problem class while the penalty 
method exhibits a very low growth rate in the number of iterations as the 
problem size is increased. 

�9 The predictor-corrector algorithm seems to do best on dual degenerate 
problems. 

Finally, we summarize our experience with function approximation problems. 
For this purpose we choose to approximate the exponential, the square root and 
the sine functions on the interval [0, 1]. We have solved 54 problems of varying 
dimensions altogether, 18 for each function. These experiments showed that 
BP is about ten times faster than both L I N F S O L  and P O P  on the average while 
LINFSOL and POP exhibit a similar performance. Two factors play an important 
role here. The first one is the outstanding performance of BP on these problems. 
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Figure 5.10: Iteration comparison for dual degenerate problems (m/n = 2 ) .  

This is partially due to the fact these problems have at most eight variables. This 
is a range where BP is very efficient. Furthermore, Bartels, Corm and Li [4] prove 
that the high efficiency of the BP algorithm on function approximation problems 
is due to the fact that BP exploits the special structure of function approximation 
problems. It is proved in [4] that after the first stage (Phase I) BP finds a feasible 
solution that satisfies the sign alternating property as described in Section 5.3. 
The second factor is that the optimal solution is usually near degenerate for these 
problems as defined in Section 5.3. This degrades the performance of LINFSOL 
considerably. We substantiated this observation by Theorem 5.1 in Section 5.3. 
We would like to note, however, that the accuracy of the solution is maintained 
in all the cases, and LINFSOL solves all these problems within at most three 
CPU seconds. Interestingly, the performance of P a P  deteriorates considerably 
on these problems as well. A similar degradation in performance with function 
approximation problems is reported in [9] for the exact penalty method and is 
attributed to near degeneracy as well. 

6 Conclusions. 

In this paper, a penalty continuation algorithm was designed for linear for 
problems. The computational results indicate that the algorithm is stable and 
accurate on different kinds of problems. Furthermore, it was shown to suc- 
cessfully compete with Barrodale-Phillips algorithm and the predictor-corrector 
primal-dual interior point algorithm of Zhang on a wide range of random prob- 
lems. Based on our tests, the algorithm seems to perform best on problems with 
no special structure (e.g., problems not derived from function approximation) 
where the number of variables exceeds a certain threshold. 
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