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Estimation of Depth Fields Suitable for Video Compression very low bit-rate video compression is the primary issue in this paper.

Based on 3-D Structure and Motion of Objects None of the current video coding methods with 3-D motion
models propose a method for estimating a depth field that is suitable
A. Aydin Alatan and Levent Onural for encoding. Some depth encoding algorithms exist for stereo

video coding applications [8] in which the depth field is simply
) o ) ) ) obtained by using the disparity information between stereo frames.
Abstract—intensity prediction along motion trajectories removes tem- 1, 1hase methods the obtained depth map is either DPCM-coded after
poral redundancy considerably in video compression algorithms. In three- - . .
dimensional (3-D) object-based video coding, both 3-D motion and depth duantization or fitted onto a wireframe [8]. However, such methods
values are required for temporal prediction. The required 3-D motion do not take distortion and bit rate into account simultaneously while
parameters for each object are found by the correspondence-based E- estimating the depth field.

matrix method. The estimation of the correspondences—two-dimensional It should be noted that if the number of bits to encode the depth
(2-D) motion field—between the frames and segmentation of the scene into

objects are achieved simultaneously by minimizing a Gibbs energy. The f1€ld is reduced to reach a target rate, some distortion in the depth
depth field is estimated by jointly minimizing a defined distortion and bit- ~ field, compared to the one which yields perfect intensity matches, may
rate criterion using the 3-D motion parameters. The resulting depth field be inevitable. Rate-distortion theory [9] gives a relationship between
is efficient in thQ rate-distortion sense. Bit'-rate values cprrequnding to the the minimum number of bits to encode a distorted symbol sequence
Ioss_less encc_)dl_ng of the resultant depth fields are obtalned using predictive from a source and the distortion between the true and encoded
coding; prediction errors are encoded by a Lempel-Ziv algorithm. The

results are satisfactory for real-life video scenes. versions of that sequence. Using similar ideas, a lossy version of the

Index Terms—Dense depth estimation, depth encoding, motion anal- dept.h field can .be fqund by jointly minimizing the required number
ysis, object-based video coding, rate-distortion theory, 3-D motion, 3-D Of bits and a distortion measure. Such approaches are also used to
structure. estimate 2-D motion vectors between video frames [10].

The main focus of this paper is to formulate a novel method for
estimating (and thus generating) a depth field that is convenient for
encoding. In order to estimate the desired depth field, the frames

In very low bit-rate coding applications, the current trend is shiftinghould be segmented into a number of moving objects and the 3-D
from motion compensated discrete cosine transform (DCT) typeotion parameters of the objects should be found. Dense 2-D motion
algorithms, like MPEG-X, H.26X, to object-based methods [1]. Inectors are needed for both object segmentation and correspondence-
most of the current object-based algorithms, two-dimensional (2-Based 3-D motion estimation. In order to carry out simulations, a

simultaneous 2-D motion estimation and segmentation algorithm, and
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Il. MOTION ESTIMATION y-axis

In this application, the E-matrix method [6], which requires robust W
2-D motion estimates (correspondences) between consecutive frames \ ) ¥
as inputs, is chosen to estimate the rigid 3-D motions of objects and X (6)
their depth variations. Using the E-matrix method, the depth values . PA"  ROTATION
can only be estimated at the locations corresponding to those for st +
the robust (usually sparse) 2-D motion vectors. These vectors are M (X(t) ) RANSLATION
not only required for 3-D motion and depth estimation within the X (t-1)
E-matrix method, but they are also utilized to segment the scene into X D%t
a number of objects. Since moving object segmentation and motion
estimation are coupled with each other [12], segmentation and finding L olzz 4 caxls
correspondences are achieved simultaneously before 3-D motion and R Tx’ .
depth estimation.

Wy

. 1
A. 2-D Motion Estimation and Object Segmentation x=lxyl

Two-dimensional motion analysis using Gibbs formulation has ﬁ/ IMAGE PLANE X)=[X0Y,0 2O
been shown to be successful for both estimation [11] and segmen- W

tation [12]. The Gibbs energy functiof, which is the negative zraxis
exponent of the exponential joint probability density function (pdf),

can be formulated in terms of 2-D motion fielt] segmentatiofield

R andtemporally unpredictabl¢TU) regionsS, as follows:

§4

Fig. 1. Three-dimensional coordinate system.

vector. xp (t — 1) = [2p(t — 1) yp(t — 1)]” are the projected 2-
UD.R.S [ Ie,Tr—1) = Un + ApUp + ArlUr + AsUs. (1) D coordinates of the object point at timet — 1 (Fig. 1). Notice
) ) ) that Z,(xp, t) is the third component of the vect®&(t) whose
In (1), the_M,L term supports |r_1ten5|ty matching bgtween CQ”SGC”t"ﬁerspective projection gives, () and is simply called thelepth
frames with correct 2-D motion vectors according to optical flow,aiue Equation (2) shows that the displacements of pixels on the
The error measures of intensity matches can be higher thanz_@ image plane depend on both the 3-D motion parametersid

predetermined threshold only in occlusion, i.e., TU regions. Thpr ,.-) and the depth values.

Uy term favors smooth variations between neighboring 2-D motion There are different approaches to the 3-D motion and structure
vectors, except at object boundaries. The projections of the 3ddimation problem, and it is shown that the linear E-matrix approach
motions of rigid and even deformable bodies are expected to Ohgy has given good results for estimating global motion of a camera
such a constraint. Thifx term supports objects that have projectedny gepth of the stationary environment using some 2-D point
broad regions on the 2-D image plane rather than some individyrespondences between frames. In the E-matrix approach, the depth
points. Similar to thé{. term, thel{s term supportss field to consist e is simply dropped from (2), and the resulting single equation
of regions. AII)\’s_ in (1) are constants that d_etermlne the Welghtlngl_ithout depth information is solved linearly with the help of at
between these different terms. Further details of the energy termgdgs; eight robust correspondences for 3-D motion parameters [6]. In
(1) can be found in [5]. A maximura posteriori(MAP) estimate of - oiect-hased coding applications, the E-matrix method can be applied
the unknown 2-D motion field, segmentation field and TU regiong ‘ingividual objects rather than to the whole image by using the
can be obtained simultaneously by minimizing the energy functiogegmented 2-D motion vectors obtained as in Section II-A. These
U. The R field segments the scene into the objects and then 3D motion vectors give more correspondences than the minimum
motion analysis is performed on these objects separately. Howeyggired of eight. However, in order to improve the performance of
it should be noted that this minimization is a nonconvex problem. j;c error-prone algorithm, instead of using all the correspondences
(D field), “reliable” estimates are chosen by simply thresholding their
B. 3-D Motion Estimation low intensity matching error and high spatial image gradient. Such
As shown in [7], for any rigid motion from time— 1 to ¢, the 3-D  @n approach is almost equivalent to finding good matches between
coordinates of object point at time¢ — 1 can be written in terms of €dges and corners. Since 2-D motion vectors have already been
Xp(t) asXp(t — 1) = RXp(#) + T, whereR is a 3x 3 rotation found in segmentation step, this selection mechanism is more efficient
matrix andT is a 3x 1 translation vector. It should be noted thafather than applying an extra feature-matching step. Finally, a rotation
R andT do not reflect the “real” motion from time— 1 to ¢, but Matrix and a translation vector are obtained for each segmented
rather an “inverse” motion from time to + — 1. After perspective Object. Using the estimated 3-D motion parameters and available 2-D

projection of the 3-D object points onto the 2-D image plane, th€orrespondences, depth values can be obtained at the corresponding

following equations are obtained [6]: locations using (2).

e . e Ty f

plt—1) = f- i ap(t) e yp(t) + s f + [Il. DEPTH ESTIMATION IN RATE-DISTORTION SENSE

34 - -
ra - @p(t) +raz - yp(t) £ ras - f + % Since any 3-D scene can be assumed to be an output of a random
ro1 - p(t) + ran - yp(t) o3 - f 4 - Ty f source, the depth field of the scene will be a random field with a

yp(t —1) = f- - P °r erlg"_r}'“ corresponding probability. The assignment of probability to a depth
ravcwp(t) + sz yp(t) s [+ 750 field is meaningful if it matches the frequency of occurrence of that

(2) field in the real world; it is assumed that such an assignment is

made. Using this probability measure, the number of bits required

where f is the focal length of the camera;; is an element of the to encode any depth field can be determined according to the basic
rotation matrix, and7,,T,,T-.) are the elements of the translationprinciples of information theory [9]. Rate-distortion theory seeks
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the minimum achievable rate for a source to be encoded undeaMinimization of the Encoding Criterion
distortion constraint. Based on this theory, an algorithm to find the pisiortion and bit-rate are jointly minimized with respectcand
dense depth field to be encoded can be found. A possible approaqh is written as
is to minimize a function7 (A, B) that takes both distortiorh and
bit-rate B into account, with respect to the depth field to be encoded. min il
There are many different ways to approach testor optimization z N
problem; the method obbjective weighting[13] is one possible

" A<

Z (I(x) — L1 (x — ]jzu(xvt)))2>

XER;

choice, where7(A,B) = A 4+ Xo - B, with Ao being a constant
which reflects weighting between two different quantitissand 55.
Before achieving joint optimization of bit rate and depth, a distortio
criterion and a measure of bit rate should be defined.

> ¥ - 27} ®

XER; X €nx

Bince c(k) does not depend oif, it is removed from (8). The
constantsk and log,(e) are multiplied with Ao, and this product
is defined as\. For different choices of\, different values for rate
A. Distortion Criterion and distortion can be obtained. For a given bit rate (or distortion),

It is possible to define the distortion between the true and recdhe corresponding distortion (or bit rate) is optimal, if the defined
structed depth values using input frame intensities. The distortigff-model for the depth field matches the frequency of occurrence
criterion A can be defined as the average error between the origigéisuch a field in the real world\ may be specified externally or,

and reconstructed frames computed region-by-region, as follows: equivalently, some external constraints on distortion or bit rate may
be used to imply a\.

After minimizing (8), a depth field is obtained. Compared to
the depth fields that are estimated using different algorithms, this
field is more suitable for encoding since bit rate and distortion are
minimized simultaneously. In other words, the best bit-rate savings
are obtained for a given distortion. This is a significant result with
useful applications in low bit-rate video coding.

A= 5 X0 - L) ®)

xeR;

where N is the total number of object pixels in regidd. I; is the
original frame, which can also be written as

Li(x) = Li—1(x — Dap(x,t)) 4)
IV. ENTROPY CODING OF DEPTH
with the assumptions that the corresponding point is in a noise-fred_ossless (entropy) coding of the resultant depth field is essential.
nonoccluding region with no illumination change, and the object [Since the depth field found in Section 1lI-C is optimal in the sense
opaque. As can be seen in Fig. 1, for an object ppinD2p(x,t) of minimizing (8), any alteration in bit rate (or distortion) should be
is equal to achieved during the minimization of (8) instead of a subsequent lossy
encoder. Note that higher values bfwould yield lower bit rate.
D2p(x,t) = P[Masn (Xp(t))]|p[x (1)]=x (5) Although finding a depth field for efficient encoding is explained,
the method by which this depth field can be encoded to approach

whereP denotes the perspective projection. ConsequeBtly, (x, )  the theoretical bit-rate (entropy) limit is still not specified. Since it is
is a function ofZ(x) = Z,(¢), which is the depth value for perfectimpossible to give a codeword to all existing depth fields according
intensity match corresponding to locatignThe reconstructed frame t© their probabilities, another coding strategy must be followed. In
I, can be expressed similarly to (4) by using the resultant depth vaRgler to get an idea about the actual bit requirements associated with
Z(x) that would yieldD.p(x, ). Hence, (3) defines the distortionthe coding of the estimated depth fields, a heuristic lossless encoder

in a nonlinear way between the resulting depth field and the depthProposed as follows. Predictive coding is applied to remove the
field which would give a perfect match. redundancy existing in the depth field. Each depth value is predicted

from its casual horizontal and vertical neighboss.d: and xver,

) respectively) a¥Z.(x) = 0.5(Z(Xver) + Z(Xnor)). The prediction
B. Bit Rate of Encoded Depth error is coded in a lossless fashion using a Lempel—Ziv algorithm [9].
In many indoor scenes, objects normally have smooth depfiis predictor can be justified by the fact that our quadratic energy
variations, except at their boundaries. Although other smoothnédgaction leads to a linear predictor, and that the symmetry between
definitions are possible, a Gibbs energy taking this observation irfierizontal and vertical dependencies favors equal weighting of the

account can be written as neighbors.
5 5 2
Uz(2)= Y Y (Z(x) = Z(x.)) (6) V. EXPERIMENTAL RESULTS
xeER; xc€nx

Two frames (10 and 16) from the salesman sequence are used to
where the sum is over all points of the ith object, segmented by test the proposed algorithm (Fig. 2). In these frames, the man moves

the regionR;; 7 is the neighborhood af. The required number of both of his arms and his head. The size of the frames is 1784
bits, 53, to encode the depth field is simply equal-tdog, (P(Z)), _(QCIF) and it |s_assumc_ad that the unknown focal length of_the camera
whereP (Z) is the probability distribution of the depth field. Hence'S €dual to 25(ixels(this selection corresponds to approximately 50
using (6) mm focz_:ll Igngth of a 35 mm camer_a)._ AIthough thl_s _assumptlon is
coarse, it gives acceptable results. Similar to Fig. 1, it is assumed that
the optical axis passes through the center of these images.
B=1k-(logye) - <Z Z (Z(x) - Z(xc))2> +c(k) (7) The results of 2-D motion estimation are shown in Fig. 3(a). The
xER; XcEnx minimization of (1) is achieved by using the multiscale constrained
relaxation (MCR) [5] algorithm with four scales and two iterations
where % is the Gibbs energy constant, angk) constant does not of iterated conditional modes (ICM) [11] at each scale. ICM requires
depend onZ. good initial estimates for better performance. Hence, a hierarchical
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(b)

Fig. 2. Original (a) tenth and (b) sixteenth frames of salesman sequence.

Object ©

(b)

Fig. 3. Experimental results of 2-D motion analysis and segmentation for salesman sequence. (a) Needlegram of the 2-D motion estimates.
(b) Segmentation field areas.

block matching algorithm is used to initialize the 2-D motion fieldstep of the E-matrix method to obtain a dense depth map. The
Similarly, in order to improve segmentation, the result of a regiomproposed entropy coding method explained in Section IV is used to
based segmentation algorithm [14] is used as an initial estimate for #recode this dense depth field resulting from the E-matrix method. The
segmentation field before minimization. After the minimization, theimulation results in Table | show that the proposed depth estimation
resulting segmentation of the moving objects is shown in Fig. 3(glgorithm performs better than the E-matrix method. Although both
Objects 2 and 5 represent the occluding regions of right and left armafgorithms use the same 3-D motion parameters, the depth field of
respectively. After obtaining a set of reliable 2-D correspondenceahge proposed method yields superior performance, for amalue,
which have high intensity gradient and low intensity matching erroreyer the E-matrix method in the rate-distortion sense.
the E-matrix is solved using least squares for this sparse set of 2in Fig. 4, the reconstructed current frame, which is obtained by
D motion vectors. The rotation matrices and translation vectors areing the estimated 3-D motion parameters, previous frame and the
found for each segmented object, respectively. A sparse set of depticoded depth field, is shown far= 100. The TU areas have been
values is also obtained as a result of the E-matrix method. segmented using (1); the visual quality of the reconstructed frame is
The depth values that are obtained from the E-matrix methadceptable. A significant part of object 5 is successfully segmented as
are used as initial estimates for the proposed depth field estimatibd. As expected, the projections of the 3-D motions are meaningful
method. Minimization of (8) is performed using the MCR methodor the rigid objects 1, 3, and 4. The obtained depth fields for the
for various values of\. Table | shows, for each object, the dis-objects are also represented in the same figure for the same value of
tortion values as well as the bit-rate values after encoding of theDue to nonlinear minimization, the computational complexity of
depth prediction error using Lempel-Ziv algorithm. As expected, thike encoding procedure is significant. However, compared to the well-
distortion decreases as the number of bits to encode the depth flaldwn Markov random field (MRF) based 2-D motion estimation
increases. The last row of Table | is related to the encoding of ta&orithms [11], the complexity is lower by a factor of x N
dense depth values that are obtained using the plain E-matrix methiod N, where V is the number of quantized levels of the search
The dense 2-D correspondence set is utilized in the depth estimatipace for each unknown. Therefore, the computational complexity
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TABLE |
EXPERIMENTAL RESULTS FOR SALESMAN SEQUENCE FOR EAcH OBJECT AND DIFFERENT
VALUES OF A, (8) Is MINIMIZED TO OBTAIN THE CORRESPONDINGA AND BIT-RATE VALUES

Object 1 Object 2 Object 3 Object 4 Object 5
A A ‘ Bits A l Bits A I Bits A Bits A l Bits
70.6 | 5432 118.8 | 3904 || 221.8 | 6592 23.3 2536 || 2316.2 | 1240
10 156.4 | 2656 191.1 | 3601 || 227.6 | 5696 26.8 2320 || 2317.5 | 1200
50 176.4 | 1472 199.2 | 3248 || 268.3 | 4704 34.4 2201 || 2317.3 | 1144
100 177.2 | 1402 203.4 | 3224 || 281.6 | 4344 49.2 2152 || 2318.5 | 1136
3 9 2
2 S] 0
4 2 5

1000 184. 1304 | 836.2 | 2512 | 442. 2608 | 216.5 | 1848 | 2318. 1168
10000 201. 1264 || 1524.9 | 1272 || 590. 1288 || 981.8 | 1296 | 2319. 1160

E-Matrix [| 200.4 | 5392 “ 881.7 [ 3888 [| 623.2 | 8264 || 1446.8 | 2432 | 2262.5 | 1280

@) (b)

Fig. 4. Results of 3-D motion and depth estimation for salesman sequence. (a) Motion-compensated current frame using 3-D motion parameterd and encod
depth field (TU areas are segmented). (b) Needlegram of 2-D projection of 3-D motion. Encoded depth field with (c) mesh and (d) intensity reresentation
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