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Estimation of Depth Fields Suitable for Video Compression
Based on 3-D Structure and Motion of Objects

A. Aydın Alatan and Levent Onural

Abstract—Intensity prediction along motion trajectories removes tem-
poral redundancy considerably in video compression algorithms. In three-
dimensional (3-D) object-based video coding, both 3-D motion and depth
values are required for temporal prediction. The required 3-D motion
parameters for each object are found by the correspondence-based E-
matrix method. The estimation of the correspondences—two-dimensional
(2-D) motion field—between the frames and segmentation of the scene into
objects are achieved simultaneously by minimizing a Gibbs energy. The
depth field is estimated by jointly minimizing a defined distortion and bit-
rate criterion using the 3-D motion parameters. The resulting depth field
is efficient in the rate-distortion sense. Bit-rate values corresponding to the
lossless encoding of the resultant depth fields are obtained using predictive
coding; prediction errors are encoded by a Lempel–Ziv algorithm. The
results are satisfactory for real-life video scenes.

Index Terms—Dense depth estimation, depth encoding, motion anal-
ysis, object-based video coding, rate-distortion theory, 3-D motion, 3-D
structure.

I. INTRODUCTION

In very low bit-rate coding applications, the current trend is shifting
from motion compensated discrete cosine transform (DCT) type
algorithms, like MPEG-X, H.26X, to object-based methods [1]. In
most of the current object-based algorithms, two-dimensional (2-D)
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motion models are used, although such motion models have limited
performance due to lack of representation of three-dimensional (3-D)
world dynamics. Currently, 3-D motion models are rarely used in
video compression systems [1]–[5], and these approaches are usually
far from representing general solutions. However, in such algorithms
compression is still possible after removal of the temporal redundancy
by predicting intensities along motion trajectories. Both 3-D motion
and depth information are necessary to achieve this goal.

A 3-D motion model is the “simplest” way to describe any physical
motion, especially when the moving object is rigid, because any rigid
3-D motion is represented by only six degrees of freedom, i.e., six
parameters. Estimation of the 3-D motion parameters for a rigid body
observed through two consecutive 2-D frames has well-developed
solutions [6], [7] and, hence, this estimation problem can be easily
overcome. Although depth estimation using these methods can be
achieved, the obtained depth fields are usually sparse, whereas for
coding purposes it is preferable to have a dense depth field in order
to predict the intensities by motion compensation at each pixel. Given
two 2-D consecutive video frames, one or more 3-D structures may
give perfect intensity match by 3-D motion compensation. A structure
that results in perfect intensity match, if it exists, may not be suitable
for efficient encoding. Furthermore, one can find structures that are
easier to code by allowing some intensity mismatch during the motion
compensation. Estimating a dense depth field (structure) suitable for
very low bit-rate video compression is the primary issue in this paper.

None of the current video coding methods with 3-D motion
models propose a method for estimating a depth field that is suitable
for encoding. Some depth encoding algorithms exist for stereo
video coding applications [8] in which the depth field is simply
obtained by using the disparity information between stereo frames.
In these methods the obtained depth map is either DPCM-coded after
quantization or fitted onto a wireframe [8]. However, such methods
do not take distortion and bit rate into account simultaneously while
estimating the depth field.

It should be noted that if the number of bits to encode the depth
field is reduced to reach a target rate, some distortion in the depth
field, compared to the one which yields perfect intensity matches, may
be inevitable. Rate-distortion theory [9] gives a relationship between
the minimum number of bits to encode a distorted symbol sequence
from a source and the distortion between the true and encoded
versions of that sequence. Using similar ideas, a lossy version of the
depth field can be found by jointly minimizing the required number
of bits and a distortion measure. Such approaches are also used to
estimate 2-D motion vectors between video frames [10].

The main focus of this paper is to formulate a novel method for
estimating (and thus generating) a depth field that is convenient for
encoding. In order to estimate the desired depth field, the frames
should be segmented into a number of moving objects and the 3-D
motion parameters of the objects should be found. Dense 2-D motion
vectors are needed for both object segmentation and correspondence-
based 3-D motion estimation. In order to carry out simulations, a
simultaneous 2-D motion estimation and segmentation algorithm, and
a 3-D motion estimation algorithm, are proposed in Sections II-A
and II-B, respectively. Moreover, in order to give an idea about the
actual bit requirements associated with the coding of the estimated
depth fields, a lossless encoder is utilized in Section IV. Algorithms
in Sections II and IV are not the main concern of the paper; they
cannot be claimed to have the best performance. However, they do
give satisfactory results.
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II. M OTION ESTIMATION

In this application, the E-matrix method [6], which requires robust
2-D motion estimates (correspondences) between consecutive frames
as inputs, is chosen to estimate the rigid 3-D motions of objects and
their depth variations. Using the E-matrix method, the depth values
can only be estimated at the locations corresponding to those for
the robust (usually sparse) 2-D motion vectors. These vectors are
not only required for 3-D motion and depth estimation within the
E-matrix method, but they are also utilized to segment the scene into
a number of objects. Since moving object segmentation and motion
estimation are coupled with each other [12], segmentation and finding
correspondences are achieved simultaneously before 3-D motion and
depth estimation.

A. 2-D Motion Estimation and Object Segmentation

Two-dimensional motion analysis using Gibbs formulation has
been shown to be successful for both estimation [11] and segmen-
tation [12]. The Gibbs energy functionU , which is the negative
exponent of the exponential joint probability density function (pdf),
can be formulated in terms of 2-D motion fieldD, segmentationfield
R and temporally unpredictable(TU) regionsS, as follows:

U(D;R;S j It; It�1) = Un + �DUD + �RUR + �SUS : (1)

In (1), theUn term supports intensity matching between consecutive
frames with correct 2-D motion vectors according to optical flow.
The error measures of intensity matches can be higher than a
predetermined threshold only in occlusion, i.e., TU regions. The
UD term favors smooth variations between neighboring 2-D motion
vectors, except at object boundaries. The projections of the 3-D
motions of rigid and even deformable bodies are expected to obey
such a constraint. TheUR term supports objects that have projected
broad regions on the 2-D image plane rather than some individual
points. Similar to theUR term, theUS term supportsS field to consist
of regions. All�’s in (1) are constants that determine the weighting
between these different terms. Further details of the energy terms in
(1) can be found in [5]. A maximuma posteriori(MAP) estimate of
the unknown 2-D motion field, segmentation field and TU regions
can be obtained simultaneously by minimizing the energy function,
U . The R field segments the scene into the objects and then 3-D
motion analysis is performed on these objects separately. However,
it should be noted that this minimization is a nonconvex problem.

B. 3-D Motion Estimation

As shown in [7], for any rigid motion from timet�1 to t, the 3-D
coordinates of object pointp at timet� 1 can be written in terms of
Xp(t) asXp(t� 1) = RXp(t) +T, whereR is a 3� 3 rotation
matrix andT is a 3� 1 translation vector. It should be noted that
R andT do not reflect the “real” motion from timet � 1 to t, but
rather an “inverse” motion from timet to t � 1. After perspective
projection of the 3-D object points onto the 2-D image plane, the
following equations are obtained [6]:

xp(t� 1) = f �
r11 � xp(t) + r12 � yp(t) + r13 � f + T �f

Z (x ;t)

r31 � xp(t) + r32 � yp(t) + r33 � f + T �f

Z (x ;t)

yp(t� 1) = f �
r21 � xp(t) + r22 � yp(t) + r23 � f +

T �f

Z (x ;t)

r31 � xp(t) + r32 � yp(t) + r33 � f + T �f

Z (x ;t)

(2)

wheref is the focal length of the camera,rij is an element of the
rotation matrix, and(Tx; Ty; Tz) are the elements of the translation

Fig. 1. Three-dimensional coordinate system.

vector.xp(t � 1) = [xp(t � 1) yp(t � 1)]T are the projected 2-
D coordinates of the object pointp at time t � 1 (Fig. 1). Notice
that Zp(xp; t) is the third component of the vectorXp(t) whose
perspective projection givesxp(t) and is simply called thedepth
value. Equation (2) shows that the displacements of pixels on the
2-D image plane depend on both the 3-D motion parameters (rij and
Tx;y;z) and the depth values.

There are different approaches to the 3-D motion and structure
estimation problem, and it is shown that the linear E-matrix approach
[6] has given good results for estimating global motion of a camera
and depth of the stationary environment using some 2-D point
correspondences between frames. In the E-matrix approach, the depth
term is simply dropped from (2), and the resulting single equation
without depth information is solved linearly with the help of at
least eight robust correspondences for 3-D motion parameters [6]. In
object-based coding applications, the E-matrix method can be applied
to individual objects rather than to the whole image by using the
segmented 2-D motion vectors obtained as in Section II-A. These
2-D motion vectors give more correspondences than the minimum
required of eight. However, in order to improve the performance of
this error-prone algorithm, instead of using all the correspondences
(D field), “reliable” estimates are chosen by simply thresholding their
low intensity matching error and high spatial image gradient. Such
an approach is almost equivalent to finding good matches between
edges and corners. Since 2-D motion vectors have already been
found in segmentation step, this selection mechanism is more efficient
rather than applying an extra feature-matching step. Finally, a rotation
matrix and a translation vector are obtained for each segmented
object. Using the estimated 3-D motion parameters and available 2-D
correspondences, depth values can be obtained at the corresponding
locations using (2).

III. D EPTH ESTIMATION IN RATE-DISTORTION SENSE

Since any 3-D scene can be assumed to be an output of a random
source, the depth field of the scene will be a random field with a
corresponding probability. The assignment of probability to a depth
field is meaningful if it matches the frequency of occurrence of that
field in the real world; it is assumed that such an assignment is
made. Using this probability measure, the number of bits required
to encode any depth field can be determined according to the basic
principles of information theory [9]. Rate-distortion theory seeks
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the minimum achievable rate for a source to be encoded under a
distortion constraint. Based on this theory, an algorithm to find the
dense depth field to be encoded can be found. A possible approach
is to minimize a functionJ (�;B) that takes both distortion� and
bit-rateB into account, with respect to the depth field to be encoded.
There are many different ways to approach thisvector optimization
problem; the method ofobjective weighting[13] is one possible
choice, whereJ (�;B) = � + �0 � B, with �0 being a constant
which reflects weighting between two different quantities� andB.
Before achieving joint optimization of bit rate and depth, a distortion
criterion and a measure of bit rate should be defined.

A. Distortion Criterion

It is possible to define the distortion between the true and recon-
structed depth values using input frame intensities. The distortion
criterion� can be defined as the average error between the original
and reconstructed frames computed region-by-region, as follows:

� =
1

N
x2R

(It(x)� Ît(x))
2 (3)

whereN is the total number of object pixels in regionRi. It is the
original frame, which can also be written as

It(x) = It�1(x�D2D(x; t)) (4)

with the assumptions that the corresponding point is in a noise-free
nonoccluding region with no illumination change, and the object is
opaque. As can be seen in Fig. 1, for an object pointp; D2D(x; t)

is equal to

D2D(x; t) = P[M3D(Xp(t))]jP[X (t)]=x (5)

whereP denotes the perspective projection. Consequently,D2D(x; t)

is a function ofZ(x) = Zp(t), which is the depth value for perfect
intensity match corresponding to locationx. The reconstructed frame
Ît can be expressed similarly to (4) by using the resultant depth value
Ẑ(x) that would yieldD̂2D(x; t). Hence, (3) defines the distortion
in a nonlinear way between the resulting depth field and the depth
field which would give a perfect match.

B. Bit Rate of Encoded Depth

In many indoor scenes, objects normally have smooth depth
variations, except at their boundaries. Although other smoothness
definitions are possible, a Gibbs energy taking this observation into
account can be written as

UZ(Z) =

x2R x 2�

(Ẑ(x)� Ẑ(xc))
2 (6)

where the sum is over all pointsx of the ith object, segmented by
the regionRi; �x is the neighborhood ofx. The required number of
bits, B, to encode the depth field is simply equal to� log2(P(Z)),
whereP(Z) is the probability distribution of the depth field. Hence,
using (6)

B = k � (log2e) �

x2R x 2�

(Ẑ(x)� Ẑ(xc))
2

+ c(k) (7)

wherek is the Gibbs energy constant, andc(k) constant does not
depend onZ.

C. Minimization of the Encoding Criterion

Distortion and bit-rate are jointly minimized with respect toZ and
this is written as

min
Z

1

N
x2R

(It(x)� It�1(x� D̂2D(x; t)))
2

+ �

x2R x 2�

(Ẑ(x)� Ẑ(xc))
2

: (8)

Since c(k) does not depend onZ, it is removed from (8). The
constantsk and log2(e) are multiplied with�0, and this product
is defined as�. For different choices of�, different values for rate
and distortion can be obtained. For a given bit rate (or distortion),
the corresponding distortion (or bit rate) is optimal, if the defined
pdf-model for the depth field matches the frequency of occurrence
of such a field in the real world.� may be specified externally or,
equivalently, some external constraints on distortion or bit rate may
be used to imply a�.

After minimizing (8), a depth field is obtained. Compared to
the depth fields that are estimated using different algorithms, this
field is more suitable for encoding since bit rate and distortion are
minimized simultaneously. In other words, the best bit-rate savings
are obtained for a given distortion. This is a significant result with
useful applications in low bit-rate video coding.

IV. ENTROPY CODING OF DEPTH

Lossless (entropy) coding of the resultant depth field is essential.
Since the depth field found in Section III-C is optimal in the sense
of minimizing (8), any alteration in bit rate (or distortion) should be
achieved during the minimization of (8) instead of a subsequent lossy
encoder. Note that higher values of� would yield lower bit rate.

Although finding a depth field for efficient encoding is explained,
the method by which this depth field can be encoded to approach
the theoretical bit-rate (entropy) limit is still not specified. Since it is
impossible to give a codeword to all existing depth fields according
to their probabilities, another coding strategy must be followed. In
order to get an idea about the actual bit requirements associated with
the coding of the estimated depth fields, a heuristic lossless encoder
is proposed as follows. Predictive coding is applied to remove the
redundancy existing in the depth field. Each depth value is predicted
from its casual horizontal and vertical neighbors (xhor and xver,
respectively) aŝZe(x) = 0:5(Ẑ(xver) + Ẑ(xhor)). The prediction
error is coded in a lossless fashion using a Lempel–Ziv algorithm [9].
This predictor can be justified by the fact that our quadratic energy
function leads to a linear predictor, and that the symmetry between
horizontal and vertical dependencies favors equal weighting of the
neighbors.

V. EXPERIMENTAL RESULTS

Two frames (10 and 16) from the salesman sequence are used to
test the proposed algorithm (Fig. 2). In these frames, the man moves
both of his arms and his head. The size of the frames is 176�144
(QCIF) and it is assumed that the unknown focal length of the camera
is equal to 250pixels(this selection corresponds to approximately 50
mm focal length of a 35 mm camera). Although this assumption is
coarse, it gives acceptable results. Similar to Fig. 1, it is assumed that
the optical axis passes through the center of these images.

The results of 2-D motion estimation are shown in Fig. 3(a). The
minimization of (1) is achieved by using the multiscale constrained
relaxation (MCR) [5] algorithm with four scales and two iterations
of iterated conditional modes (ICM) [11] at each scale. ICM requires
good initial estimates for better performance. Hence, a hierarchical
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(a) (b)

Fig. 2. Original (a) tenth and (b) sixteenth frames of salesman sequence.

(a) (b)

Fig. 3. Experimental results of 2-D motion analysis and segmentation for salesman sequence. (a) Needlegram of the 2-D motion estimates.
(b) Segmentation field areas.

block matching algorithm is used to initialize the 2-D motion field.
Similarly, in order to improve segmentation, the result of a region-
based segmentation algorithm [14] is used as an initial estimate for the
segmentation field before minimization. After the minimization, the
resulting segmentation of the moving objects is shown in Fig. 3(b).
Objects 2 and 5 represent the occluding regions of right and left arms,
respectively. After obtaining a set of reliable 2-D correspondences,
which have high intensity gradient and low intensity matching errors,
the E-matrix is solved using least squares for this sparse set of 2-
D motion vectors. The rotation matrices and translation vectors are
found for each segmented object, respectively. A sparse set of depth
values is also obtained as a result of the E-matrix method.

The depth values that are obtained from the E-matrix method
are used as initial estimates for the proposed depth field estimation
method. Minimization of (8) is performed using the MCR method
for various values of�. Table I shows, for each object, the dis-
tortion values as well as the bit-rate values after encoding of the
depth prediction error using Lempel–Ziv algorithm. As expected, the
distortion decreases as the number of bits to encode the depth field
increases. The last row of Table I is related to the encoding of the
dense depth values that are obtained using the plain E-matrix method.
The dense 2-D correspondence set is utilized in the depth estimation

step of the E-matrix method to obtain a dense depth map. The
proposed entropy coding method explained in Section IV is used to
encode this dense depth field resulting from the E-matrix method. The
simulation results in Table I show that the proposed depth estimation
algorithm performs better than the E-matrix method. Although both
algorithms use the same 3-D motion parameters, the depth field of
the proposed method yields superior performance, for any� value,
over the E-matrix method in the rate-distortion sense.

In Fig. 4, the reconstructed current frame, which is obtained by
using the estimated 3-D motion parameters, previous frame and the
encoded depth field, is shown for� = 100. The TU areas have been
segmented using (1); the visual quality of the reconstructed frame is
acceptable. A significant part of object 5 is successfully segmented as
TU. As expected, the projections of the 3-D motions are meaningful
for the rigid objects 1, 3, and 4. The obtained depth fields for the
objects are also represented in the same figure for the same value of�.

Due to nonlinear minimization, the computational complexity of
the encoding procedure is significant. However, compared to the well-
known Markov random field (MRF) based 2-D motion estimation
algorithms [11], the complexity is lower by a factor ofN � N

to N , whereN is the number of quantized levels of the search
space for each unknown. Therefore, the computational complexity
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TABLE I
EXPERIMENTAL RESULTS FORSALESMAN SEQUENCE. FOR EACH OBJECT AND DIFFERENT

VALUES OF�, (8) IS MINIMIZED TO OBTAIN THE CORRESPONDING� AND BIT-RATE VALUES

(a) (b)

Fig. 4. Results of 3-D motion and depth estimation for salesman sequence. (a) Motion-compensated current frame using 3-D motion parameters and encoded
depth field (TU areas are segmented). (b) Needlegram of 2-D projection of 3-D motion. Encoded depth field with (c) mesh and (d) intensity representations.

is less prohibitive compared to MRF-based 2-D motion estimation
algorithms.

VI. CONCLUSION

A novel depth estimation algorithm that generates dense depth
fields that are easy to encode, is proposed. The utilization of such
an algorithm within object-based video coders based on 3-D motion
and structure, should be more preferable than conventional depth esti-
mation algorithms, since bit rate and distortion are taken into account
together. During experiments, it was observed that better compression
and quality can be obtained whenever the 3-D motion parameter set
represents an acceptable motion between the two frames. Hence, 3-
D motion estimation is a critical factor that determines the overall
performance. The simulation results show that the required number
of bits to encode a depth field is still too high for very low bit-rate
applications. However, it should be noted that the encoded depth field
belongs to a rigid object and the temporal redundancy in this field
is high. Therefore, the real benefits will be achieved when longer
sequences with more than two frames are encoded.
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